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CONVERSION FACTORS

For the convenience of readers who prefer to use metric International System
(SI) units rather than the inch-pound terms used in this report, the following
conversion factors may be used:

Multiply By To obtain
Length
inch (in.) 25.4 "millimeter (mm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)
Volume
gallon (gal) 3.785 liter (L)
gallon (gal) 3.785x10"? cubic meter (m?)
Flow
gallon per minute (gal/min) 0.06308 liter per second (L/s)
cubic foot per second (ft3/s) 0.02832 cubic meter per second (m3/s)
Transmigsivity
squared foot per day (£t2/4) 0.09290 meter per day (m/d)
inch per year (in/yr) 25.4 millimeter per year (mm/yr)

Specific Capacity

gallon per minute per foot 0.2070 liter per second per meter

[(gal/min)/ft] [(L/s)/m]

Sea level: 1In this report, "sea level" refers to the National Geodetic
Vertical Datum of 1929 (NGVD of 1929)-- a geodetic datum derived from a
general adjustment of the first-order level nets of both the United States and
Canada, formerly called "Mean Sea Level of 1929."



GROUND-WATER RESOURCES
OF THE YORK JAMES PENINSULA OF VIRGINIA

By R.J. Laczniak and A.A. Meng III

ABSTRACT

An unconfined aquifer underlain by six confined aquifers and intervening
confining units comprise the hydrogeologic framework of the York-James
Peninsula. The three lowermost aquifers--the upper, middle, and lower Potomac
aquifers--are the thickest and most productive. These aquifers supplied about
87 percent of the total estimate of ground water withdrawn (39 million gallons
per day (Mgal/d)) in 1983. The middle and lower Potomac aquifers, in the
western part of the Peninsula, contain water of the best quality for potable
supply within York-James Peninsula.

A three dimensional, digital flow model that simulates ground-water flow
conditions prior to and throughout the history of ground-water development
provides information about the flow of ground water through the multiaquifer
system and addresses concerns about the future use of this resource. The
model shows that reduction of ground-water flow to and induced flow from sur-
face waters have largely compensated for most of the ground water withdrawals.
Model simulation shows that these two flow components accounted for 87 percent
of the total water withdrawn (38 Mgal/d) in the final pumping period
(1981-83). Most of the surface water that recharges the ground-water flow
system was from sources containing salty water (Chesapeake Bay and Atlantic
Ocean). This recharge was mainly to parts of aquifers not used for freshwater
supply, and rates of recharge were relatively slow, Most of the water
withdrawn from confined aquifers was replaced by water flowing through the
overlying and underlying confining units.

Four scenarios of increased withdrawal are used to evaluate the availabi-
lity of ground water for meeting future freshwater supply needs. Results
indicate that (1) increased withdrawals are expected to continue to lower
water levels throughout the aquifers and that these water-level declines will
limit yields from aquifers before available recharge is depleted, (2) the
severity of water-level decline could be lessened by locating projected
withdrawals away from established pumping centers, (3) the severity of water-
level decline could be lessened by using ground water as a supplemental
supply, (4) withdrawal from the deeper confined aquifers appears to have a
minimal effect on water levels in the Yorktown-Eastover aquifer (uppermost
confined aquifer), (5) the distribution and rate of recharge induced from
sources containing salty water (surface water or underlying aquifer) depend on
the location and quantity of water (surface or underlying aquifer) depend on
the location and quantity of water withdrawn, and (6) withdrawal from the
Yorktown-Eastover aquifer in York County induces recharge from overlying
brackish surface water sources.



INTRODUCTION

Ground water is an important resource of the York-James Peninsula that
historically has provided a significant part of the water supplied to the
population and industries throughout the peninsula. Since about 1890, the use
of ground water has increased steadily. The steady use (withdrawal) of ground
water has lowered water levels throughout the aquifers creating cone-like
depressions in the water-level surface. These cones of depression have
expanded outward from centers of heavy ground-water withdrawal causing inter-
ference among ground-water users.

Census projections predict rapid growth of the peninsula's population
centers and increases in both industrial and agricultural development.
Continued growth and development will increase the demand for freshwater
supplies. Any increased use of ground water will further lower water levels,
thus causing more interference among ground-water users as cones of depression
expand outward, and possibly, accelerate the movement of salty water into the
freshwater parts of aquifers. These potentially adverse effects of increased
ground-water withdrawal are of major concern to those involved in managing the
water resources of the Peninsula. The severity and extent to which these
adverse effects will occur are unknown; thus, the reliability of ground water
as a source for meeting future water needs is uncertain. 1In 1982, the U.S.
Geological Survey, in cooperation with the Virginia Water Control Board, the
cities of Newport News and Williamsburg, and the counties of Charles City,
Hanover, James City, New Kent, and York, began a comprehensive study to assess
the ground-water resources of the York-James Peninsula.

Purpose and Scope

The purpose of this report is to describe the availability and quality of
ground water in the York-James Peninsula. The report presents hydrologic data
collected during the study and the results from a digital flow model developed
to aid in the assessment of the ground-water resource. Specifically, the
report describes (1) the aquifers and confining units composing the ground-
water flow system, (2) the flow of ground water through the multiaquifer
system, (3) the withdrawal of ground water from aquifers, (4) the quality of
water within each aquifer, (5) the hydraulic characteristics of aquifers and
confining units, (6) the digital-flow model that simulates ground-water flow,
and (7) the effects of increased ground-water withdrawal as projected by model
simulations.

Hydrologic data on aquifers and confining units within the York-James
Peninsula were collected, compiled, and analyzed. These data were used to
develop a digital model to simulate ground-water flow. The digital flow model
provided hydrologic information describing the regional response of the
multiaquifer system to simulated increases in ground-water withdrawal. The
information presented in this report is intended to improve understanding of
the ground-water resources of the York-James Peninsula.

Location of Study Area

The study area is located in the central part of the Coastal Plain phy-
siographic province of Virginia and includes most of the landmass commonly
referred to as the York-James Peninsula (fig. l). The study area is bounded









were installed to obtain additional hydrologic information. The stations pro-
vided: (1) hydrogeologic data to refine identified hydrogeologic units, (2)
water-quality data to define lateral and vertical changes in the chemical com-
position of ground water within the multiaquifer system, (3) vertical
hydraulic conductivity values of confining units, and (4) the mineral com-
position of aquifer and confining-unit sediments.
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HYDROGEOLOGY

The Coastal Plain physiographic province of Virginia is underlain by
layered, sedimentary deposits that generally thicken and dip eastward. These
deposits consist of clay, silt, sand, and gravel, with variable amounts of
shell material. Except for some local calcareous cementations, this sedimen-
tary section is devoid of consolidated sediments. These local cementations
are usually associated with shell beds and form thin, lithified strata
referred to as "shell rock" by local drillers. The unconsolidated sediments
overlie a hard rock surface, commonly referred to as "basement"™, which also
slopes eastward. This sloping rock surface emerges at the Fall Line, marking
the western limit of the onlapping Coastal Plain deposits, and continues west-
ward forming the Piedmont physiographic province. The sediments of the study
area attain a thickness of 2,246 feet (Cederstrom, 1957), at the southeastern
end of the York-James Peninsula.

The geologic age of the sedimentary section ranges from Early Cretaceous
to Holocene and has a highly varied depositional history. About 70 percent of
the sedimentary section consists of Cretaceous sediments, with the remainder
consisting mostly of Tertiary sediments. The Cretaceous sediments are mainly
continental in origin and consist of alternating sand and clay. These sand
and clay deposits are laterally discontinuous and highly variable in
thickness. The alternating depositional sequences of the Cretaceous section
are attributed to fluvial-deltaic processes. Throughout the Early Cretaceous
Epoch, large quantities of weathered-rock material were transported out of the
western mountainous highlands of the Piedmont and Blue Ridge physiographic
provinces by streams and deposited in the lowlands at the edge of the
Continental margin. As these sediments accumulated, large delta lobes
prograded oceanward. Within the forming deltas, different fluvial environ-
ments produced a variety of interfingering continental deposits ranging from
carbonaceous clay and silty clay to sand and gravel.

Tertiary sediments of marine origin overlie the Cretaceous deposits.
These marine sediments form areally extensive and predictable layered
depositional sequences. The uniform depositional patterns of the Tertiary
section are the result of generally constant and widespread environmental con-
ditions resulting from the inundation of the Coastal Plain landmass by many
transgressions of the sea. The Tertiary marine environments produced deposits
ranging from clay to sand with varying amounts of shell.

A thin series of Pleistocene sediments overlie the Tertiary deposits.
These sediments formed as a result of fluctuating sea levels during the latest
ice age and mostly occur as a series of terrace-type deposits of fluvial or
marine origin. As sea levels declined, because of the expansion of the polar
ice caps, the Coastal Plain sediments were deeply entrenched and eroded along
stream valleys. Streams cut into and through aquifers and confining units
near land surface, thus increasing the influence of streams on the ground-
water flow system. As sea levels rose, because of the melting of glacial ice,
the deeply incised stream valleys were infilled and the headlands were eroded.
Deposits range from peat to silty clay and sand to gravel.

A thin veneer of Holocene sediments overlie the Pleistocene deposits in
the eastern part of the study area. These sediments are the result of gra-
dually rising sea levels occurring since the Pleistocene. The Holocene sedi-



ments occur mostly as fringing estuarine, lagoonal, and tidal deposits, These
sediments are hydrologically similar to the underlying Pleistocene deposits
and, therefore, are combined in the model analysis. Erosional and depositional
processes of the Pleistocene Epoch produced the drowned river valleys and
broad, stair-step-like terrace landforms of the York-James Peninsula.

Aquifers and Confining Units

The alternating sand and clay deposits of the Coastal Plain physiographic
province of Virginia form a layered series of aquifers and confining units
that compose the hydrogeologic framework. Aquifers consist mainly of sand, or
interbedded sand and clay, while confining units consist mainly of silt and
clay. The hydrogeologic framework was developed from correlation of litholo-
gic and geophysical logs, water-quality analyses, water-level data, and
paleontologic and hydraulic analyses of core samples. The locations of
control wells are shown in figure 2. The alternating sand and clay deposits
form seven confined aquifers, an overlying water-table aquifer, and intervening
confining units (table 1). Nomenclature is similar to that presented by Meng
and Harsh (1984). Corresponding geologic formations, ages, and hydrogeologic
units described by previous investigators also are included in table l. Only
six of the seven confined aquifers listed in table 1 exist within the limits
of the study area--the Virginia Beach aquifer, of Late Cretaceous age, is not
present and therefore is not discussed in this report. Hydrogeologic
descriptions, hydrologic characteristics, and a range of well yields for the
aquifers are given in table 2. Hydrogeologic sections, shown in figures 3 and
4, illustrate the relative positions of hydrologic units throughout the
peninsula. The areal extents and structure tops of each confined aquifer
relative to sea level are shown in figures 5-10. The thicknesses and areal
extents of intervening confining units are shown in figures 11-17. The
aquifers and confining units of the York-James Peninsula are described briefly
below. For a more detailed discussion on hydrogeologic characteristics, depo-
sitional patterns and settings, and geophysical log correlations, the reader
is referred to Meng and Harsh (1984).

The Columbia aquifer includes Holocene and Pleistocene sediments. It is
the uppermost aquifer and is a water-table aquifer throughout its extent.
The aquifer is present only in the eastern part of the study area and primarily
consists of a thin series of Pleistocene terrace deposits. The thickness of
the Columbia aquifer is highly variable and generally ranges between 10 to 40
feet but also attains thicknesses greater than 80 feet in Pleistocene
paleochannels. The aquifer consists of interbedded and intermixed sand, silt,
and clay, generally overlying a gravelly base.

The Yorktown-Eastover aquifer is the uppermost aquifer of Tertiary age
and includes sediments of the Pliocene Yorktown Formation and the Miocene
Eastover Formation. It is present throughout the study area, except along
stream valleys where the aquifer has been removed by erosion (fig. 5). The
thickness of the aquifer is highly variable and generally depends on the ele-
vation of the land surface. Thickness ranges from a featheredge at the updip
limit to 160 feet thick at well S9E 5 in the city of Hampton. The lithology
of the aquifer is complex, varying from gravelly-to-silty sand, interbedded
with silt, clay, and shell. The Yorktown-Eastover aquifer is the water-table
aquifer in the western and central parts of the study areas and is overlain by
the Yorktown confining unit in the eastern part of the study area. The
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Table 1.-Hydrogeologic units in the York-James Peninsula

Mn:g_glopﬁc Unat
York~Janes Virginia
Peninsula State Water laczniak
Stratigraphic Model Cederstrom Control Board Yarsh and Harsh
Period Epoch formation (this report) (1957) (1977) (1980) (1986)
Sands of Recent
Quatermary | Holxene Undi fferentiated Colunbia deposits and the Quaternary Columbia
Pleistocene sediments aqui fer Columbia Group aqui fer aqui fer
Yotktown Vater-table Yorktown
Pliocene Yorktown confining unit | Sands and shells aqui fer confining unit
Formation Yorktown- of the Yorktown Yorktown
Eastover Formation Aqui fer Yotktown-Eastover
Eastover aqui fer aquifer
Formation
St. Marys St. Marys St. Marys
Formation confining unit confining unit
Miocene Choptank Confining Confining St. Marys-
Formation wit uit Choptank .miferz
Calvert Calvert Calvert
Fomation confining unit confining unit
Tertiary Old Church Bagal sands of the
Oligocene Formation Chickahominy- | Calvert Formation | Upper Chickahowi ny-
Chickahominy Piney Point Sands of the artesian Piney Point
Formation | aquifer Chickahomiay aqui er Eocene aqui fer
Piney Poiat Formation and .
Eocene Formation Sands of the Paleocene
Nan jemoy Nan jenoy aqui fer
Formation Nan jemoy~ Formation Qufining Nan jemoy-
Mar]lboro Marlboro wit Mar]boro
Clay confining unit confining unit
Aquia Auia Sands of the Aquia
Formation aqui fer Aquis Formation _aquifer
Brightseat -
Paleocene Principal Upper Potomsc
Brightseat Upper Potomac | Sends of the artesian Confining confining wnit? |
Formation confining unit | Mateaponi aqui fer unit Brightseat -
Upper Potomec | Formation Upper Potomac
aquifer a@jfcz
Equivalent of Virginia Beach
Black Creek confining unit! Confining
Formation ! wit &
of North Virginia Beach | Not present Not present | Mot oresent 1
Late Carolina aqui ferl in area in aree in ares aqui fer &
Cretaceous
Upper Potomac Upper Potomsc
confining unit | Sands of the confining unit
Mattaponi Brightseat ~
Upper Potomac | Formation Upver Potomac
aqui fer aqui fer
Cretaceous Middle Potomac Principal Middle Potomsc
Potomac confining unit artesian Cret confining unit
Formation ddle Potomac aqui fer aqui fer Middle Potomac
aqui fer Sards of the aqui fer
Early Lower Potomac | Potomac Growp Lower Potomsc
Cretaceous confining wit confining unit
Lower Potomac Lower Potomac
aquifer aquifer

ot present in study area but present in model ares

2No: present in model area




Table 2.--Hydrogeologic descriptions, characteristics, and well yields of aquifers in the York-James Pen1n1|

[gal/min 1s gallons per minute]

Well yleld
(gal/min)
Aquifer name and description Hydrologic characteristics
Common May
range exceed

Columbia aquifer: Sand and gravel, commonly 3-30 40 Generally unconfined, semfconfined locally.
clayey; interbedded with silt and clay. Most productive in eastern area, very thin
Fluvial to marine in origin, deposition to missing 1n central and western areas.
resulted in terrace-type deposits from Water is very hard calcium-bicarbonate type.
varying Pleistocene sea levels. Highly susceptible to contamination from sur-

face pollutants. Elevated concentrations of iron

and nitrate in some areas. Possibility of

salty water i{n coastal regfions.
Yorktown-Eastover aquifer: Sand, common! 5-80 200 Multiaquifer unit. Mostly confined, uncon-
shelly; interbedded with si11t, clay, shell fined updip in outcrop areas. Thickness
beds, and gravel. Shallow, embayed marine dependent on altitude of land surface.
in or1?1n, deposition resulted in inter- Highest ylelds f{n eastern area, thin to
fingering near-shore deposits from marine missing in western area. Water is hard to
transgressions. ver¥ hard sodium calcium bicarbonate type.

Salty water in lower part of aquifer in

eastern area.
Chickahominy-Piney Point aquifer: Sand, 10-110 200 Important aquifer in central area; ytelds
moderatol{ glauconitic, shelly; inter- moderate to abundant supplies to domestic,
bedded with silt, clay, and thin, small industrial, and municipal wells.
indurated shell beds. Shallow, inner Water i{s soft to hard, calclium sodium
marine shelf in origin, deposition result bicarbonate type and generally suitable
of marine transgression. for most uses. Aquifer not present in westegﬂl

area.
Aquia aguifer: Sand, glauconitic, shelly; 15-210 350 Important aquifer in central area; ¥1elds
interbedded with thin, indurated shell moderate supplies to domestic, smal
beds and silty clay intervals. Shallow, industrial, and municipal wells. Water is
inner to middle marine shelf in origin, soft sodium bicarbonate type, with elevated
deposition result of marine transgression. iron, sulfide, and hardness locally.

Aquifer not present in eastern area.
Upper Potomac aquifer: Sand, very fine to 20-400 1,000 Multtaquifer unit. Restricted to subsur-
medium, micaceous, 1ignitic, and clayey; face, ylelds largest supply of water in
interbedded with silty clays; confined, study area. Water is soft sodium chloride
restricted to central and eastern areas. bicarbonate type with elevated chlorides in
Shallow, estuarine and marginal marine in eastern area.
origin, sediments result of first major
marine inundation of Cretaceous deltas.
Middle Potomac aquifer: Sand, fine to 20-160 700 Multiaquifer unit. Yields second largest
coarse, occasional gravels; interbedded supply of water in study area. Water is
with silty clays; generally confined, moderately hard, sodium chloride bicarbonate
unconfined 1n outcrop areas of north- type, with elevated chiorides in eastern area.
western Coastal Plain and major stream
valleys near Fall Line. Fluvial in
origin, sediments result of deltaic
deposition.
Lower Potomac aquifer: Sand, medium 100-800 1,500 Multiaquifer unit. Yields third largest

to Ver{ coarse, and gravels, clayey;
generally confined, unconfined only in
northwestern area of Coastal Plain.
Fluvial in origin, sediments result of
deltaic deposition.

supply of water. Water ts soft to very hard,
and of a sodium bicarbonate to sodium

chioride type, with elevated chlorides and dis-
solved solids in eastern area. Thickest of

all aquifers.
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Yorktown confining unit ranges in thickness from a featheredge at the western
limit to 40 feet at well 58F 18 in central York County (fig. 11). Along its
western limit, the Yorktown confining unit is highly dissected and commonly
caps the higher land elevations. In the eastern part of the study area, the
Yorktown confining unit is overlain by the Columbia aquifer.

The Chickahominy-Piney Point aquifer is of middle Teritiary age and
includes sediments of the Miocene and Oligocene 0Old Church Formation and the
Eocene Chickahominy and Piney Point Formations. It is present throughout the
study area, except along the Fall Line. The aquifer crops out in a small area
along the James River and in a much more extensive area along the Pamunkey
River (fig. 6). In cross-section, the Chickahominy-Piney Point aquifer is
both lenticular and wedge-shaped. It is lenticularly shaped from the updip
limit to well 58F 50 just east of the city of Williamsburg and thickens to 82
feet at well 55H 6 in southern New Kent County. The aquifer thins to a
featheredge along the updip limit and to 30 feet at well 58F 18 in central
York County. East of wells 58F 18 and 58F 50, the Chickahominy-Piney Point
aquifer becomes wedge-shaped and thickens to 146 feet at well 59E 5 in the
city of Hampton. The lenticularly-shaped section consists of medium-to-coarse
glauconitic sand, interbedded with clay and indurated shellbeds. The wedge-
shaped section consists of coarse-to-very coarse quartz sand. The
Chickahominy-Piney Point aquifer is overlain by the Calvert confining unit
which thickens from a featheredge at the updip limit to 134 feet at well 59E 6
in the city of Hampton (fig. 13). The Calvert confining unit is overlain by
the St. Marys confining unit in the eastern half of the study area and by the
Yorktown-Eastover aquifer in the western half. The St. Marys confining unit
thickens to 70 feet at well 59E 5 in the city of Hampton (£fig. 12) and is also
overlain by the Yorktown-Eastover aquifer.

The Aquia aquifer is the lowermost aquifer of Teritiary age in the study
area and includes sediments of the Paleocene Aquia Formation. It is present
throughout the study area, except in a narrow band just east of the Fall Line
and in the extreme eastern part of the study area. The aquifer crops out
along both the James and Pamunkey Rivers (fig. 7). In cross-section, the
Aquia aquifer is lenticularly-shaped. It attains a thickness of 62 feet at
well 55H 1 in southeastern New Kent County and thins to a featheredge at both
its updip and downdip limits. The updip limit is erosional, while the downdip
limit is gradational--that is, the sandy aquifer sediments gradually change to
clay. The aquifer consist of fine-to-medium glauconitic sand with thin
interbedded silt and shell. The Aquia aquifer is overlain by the
Nanjemoy-Marlboro confining unit which ranges in thickness from a featheredge
along the updip limit to 80 feet at well 58F 18 in central York County (fig.
14). The Nanjemoy-Marlboro confining unit is overlain by the
Chickahominy-Piney Point aquifer.

The upper Potomac aquifer includes sediments of the upper part of the
Cretaceous Potomac Formation and the Paleocene Brightseat Formation. It is
the thinnest of the aquifers of Cretaceous age and is present throughout the
eastern two-thirds of the study area (fig. 8). The aquifer thickens from a
featheredge along the updip limit to 87 feet at well 59E 5 in the city of
Hampton and consists of fine-to medium, thickly-bedded sand interlayered with
thin clay. The upper Potomac aquifer is overlain by the upper Potomac con-
fining unit. The upper Potomac confining unit is highly variable in
thickness, ranging from 6 feet at well 57G 21 near the city of Williamsburg to
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74 feet at well 59D 20 in the city of Newport News (fig. 15). The upper
Potomac confining unit is overlain by the Aquia aquifer, except in the eastern
part of the study area, where the confining unit is overlain by the
Nanjemoy-Marlboro confining unit.

The middle Potomac aquifer includes sediments of the middle part of the
Cretaceous Potomac Formation and is the second thickest aquifer of the study
area. It is present throughout the study area and crops out along the James
and Pamunkey Rivers, just east of the Fall Line (fig. 9). The aquifer thickens
from a featheredge along the Fall Line to 428 feet at well 59E 5 in the city
of Hampton and consists of interlensing clay, silt, and medium to coarse sand
with interbedded gravel. The middle Potomac aquifer is overlain by the middle
Potomac confining unit. The middle Potomac confining unit is highly wvariable
in thickness, ranging from 10 feet at well 52K 9 in Hanover County to 64 feet
at well 56H 25 in James City County (fig. 16). The middle Potomac confining
unit is overlain by the upper Potomac aquifer throughout the study area,
except near the Fall Line, where the confining unit is overlain by the Aquia
aquifer.

The lower Potomac aquifer includes sediments of the lower part of the
Cretaceous Potomac Formation and is the lowermost and thickest aquifer in the
study area, except where it is missing near the Fall Line. It is restricted
to the subsurface (fig. 10) and thickens from a featheredge along the western
limit to 689 feet at well 59E 5 in the city of Hampton. The aquifer
consists of massively-bedded clayey sand, sandy clay, and coarse sand with
interbedded gravel. The lower Potomac aquifer overlies the pre-Creataceous
basement rock surface and is overlain by the lower Potomac confining unit.
The lower Potomac confining unit is highly variable in thickness, ranging from
19 feet at well 54G 10 in Charles City County to 78 feet at well 59E 5 in the
city of Hampton (fig. 17), and is overlain by the middle Potomac aquifer.

Occurrence, Movement, and Use of Ground Water

Ground water is defined as water in the subsurface that is under a
pressure equal to or greater than atmospheric pressure. Ground water is present
within the saturated zone in pore spaces between the sediment grains that form
aquifers and confining units and is a major source of water flowing to
streams, ponds, and reservoirs.

How water enters, moves through, and leaves the ground-water flow system
are important to the study of ground-water resources. These three components
are addressed in the "hydrologic cycle" that is illustrated in figure 18. The
hydrologic cycle describes the continuous movement of water above, on, and
below the surface of the earth. It has neither a beginning nor an end.
Discussion of ground water commonly begins with precipitation. Rain water
infiltrates the ground and percolates downward into the saturated zone. The
upper part of the saturated zone forms the water-table aquifer. Water moves
downward or laterally through this aquifer along flow paths toward discharge
sites such as seeps, springs, streams, the Chesapeake Bay, or Atlantic Ocean.
Water that moves downward in the water-table aquifer eventually encounters
less permeable (conductive) sediments. These finer-grained sediments, such as
silt and clay, partially impede downward movement of ground water, forcing more
lateral movement of water through the aquifer. The silt and clay deposits
form confining units that divide the remaining sedimentary section into a
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series of separate confined aquifers. However, some water still moves through
the confining unit and recharges the underlying aquifers.

Water in confined aquifers also moves both laterally and vertically along
flow paths toward sites of discharge. Vertical movement of water within con-
fined aquifers is again impeded by confining units and the process is con-
tinuously repeated as water moves throughout the entire layered sequence of
sediments. Thus, the dominant direction of flow is lateral through the
aquifers and vertical through the confining units. Fresh ground water even-
tually encounters salty ground water in the lower aquifers of the eastern
parts of the study area. Density differences between these two types of water
forces the fresh ground water upwards. Upward moving fresh ground water again
is impeded by confining units but eventually discharges into the Chesapeake
Bay or Atlantic Ocean. Water evaporates from these surface reservoirs and
forms clouds which, in turn, produce rain to continue the hydrologic cycle
again.

The above paragraphs describe the general flow of ground-water for the
York-James Peninsula before wells were drilled to withdraw ground water. The
withdrawal of ground water from the aquifers has caused a steady decline in
water levels throughout the study area and has altered both local and regional
flow directions. The earliest documented wells in the study area date back to
about 1890. Records indicate that, from 1890 to about 1920, most wells
drilled into confined aquifers flowed naturally to land surface. As more
wells were drilled and water was depleted from the aquifers faster than it was
recharged, the potentiometric surface in the aquifers began to decline. Wells
eventually stopped flowing as the potentiometric surface declined below land
surface. In order to maintain needed supplies, pumps were installed. As the
need for water grew, the withdrawal of ground water was increased, further
lowering water levels in aquifers. Estimated annual ground-water withdrawal
from the model area is shown in figure 19. Withdrawal estimates include
water from flowing wells and commercial, industrial, and water-supply usage.
Domestic use was not included because it is assumed to represent only a small
percentage of non-returned water. Total withdrawal for 1983 was estimated to
be about 39 Mgal/d (million gallons per day). The relative significance of
each aquifer throughout the history of ground-water development is shown in
figure 20. Aquifer withdrawal rates were computed by adding ground-water use
values for all wells screened in an individual aquifer (Kull and Laczniak,
1986). For wells screened in multiple aquifers, aquifer withdrawal rates were
estimated from the ratio of the length of aquifer screened to the total length
of well screened. The 1983 estimated ground-water withdrawal from the model
area is given in table 3. The Potomac aquifers supplied about 87 percent of
the total withdrawal in 1983. The middle and upper Potomac aquifers have pro-
vided the major portion of the ground water to the Peninsula; however, the
importance of individual aquifers to local water supply varies throughout the
study area. Ground water is withdrawn primarily from the lower and middle
Potomac aquifers in the western part of the study area. The middle and upper
Potomac aquifers and the Chickahominy-Piney Point aquifer supply most of the
water in the central part of the study area. The Yorktown-Eastover and
Columbia aquifers supply the majority of water to the eastern part of the
study area because the deeper confined aquifers contain water with high con-
centrations of dissolved solids. The largest withdrawal of ground water from
the model area is near the town of West Point and was estimated to be about
15.6 Mgal/d for 1983. Other major centers of ground-water withdrawal that
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affect the flow of ground water within the study area are located (1) near the
cities of Suffolk and Williamsburg, (2) in the western part of the city of
Newport News, (3) in the central part of James City County, (4) in the eastern
parts of Hanover and Henrico counties, and (5) near the town of Smithfield.
Prior to pumping, ground water flowed through the confined aquifers toward and
eventually discharging to the Chesapeake Bay and Atlantic Ocean. Today,
because of the withdrawal of large volumes of water, the dominant direction of
flow in the confined aquifers is toward the major pumping centers.

Quality of Ground Water

Water quality is an important aspect of the ground-water resource in the
York-James Peninsula. Each ground-water user has a range of tolerance for
quality-related constituents based on individual need. A thorough knowledge
of the concentration and distribution of dissolved-chemical constituents in
ground water can further aid in identifying sources of ground water available
for specific water-supply needs. This section describes (1) the general
changes in the composition of ground water as it moves along a flow path
through the Coastal Plain sediments, (2) the general quality of ground water
in aquifers throughout the York-James Peninsula, (3) those factors affecting
ground-water quality, and (4) the water-quality problems commonly associated
with aquifers of the York-James Peninsula.
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Figure 20. Annual ground-water withdrawal from aquifers in model area.

25



Table 3.--Estimated ground-water withdrawals from mode! area
by aquifer, 1983

[Mgal/d is million gallons per day]

Withdrawail Percentage
Aquifer (Mgal/d) of total

Columbia 0.100 0.26
Yorktown-Eastover 1.373 3.52
Chickahominy-Piney Point 2.939 7.55
Aquia .903 2.32
Virginia Beach .008 .02
Upper Potomac 14.16 36.39
Middle Potomac 15.873 40.79
Lower Potomac 3.560 9.15

Total 38.916 100.00

Available water-quality data were compiled, wells sampled, and two ground-
water research stations installed and sampled in order to characterize the
general water quality of aquifers in the York-James Peninsula. Additional
sources of data were Federal and State agencies, local governments, and well-
drilling companies. Water-quality analyses with major cation-anion imbalances
greater than eight percent were considered unreliable and were not used. If
water-quality analyses were unavailable for aquifers in particular areas,
wells were sampled to obtain the needed data. One research station,
designated RS-l (wells 56H 25 to 56H 30, fig. 2) was installed in the
western part of James City County. A second research station, designated
RS-2 (wells 58F 50 to 58F 55, fig.2), was installed in the western part of the
city of Newport News. Each research station consists of six wells, each
screened in different aquifers in order to provide a vertical hydrologic pro-
file of water levels and water quality. Water-quality analyses and source
aquifers for wells sampled during the study are given in table 4. A statisti-
cal summary of all water-quality data compiled during this study is presented
by aquifer in tables 5-11. These tables provide the likely ranges of
dissolved-constituent concentrations for aquifers within the study area.

Precipitation that recharges the ground-water flow system typically con-
tains low concentrations of dissolved constituents. As precipitation
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Table 5.--Summary of water-quality analyses from Columbia aquifer in the York-James Peninsula

[N is number of samples, C, CO3 1s calcium carbonate, mg/L 1s milligrams per 1iter, Wg/L is
micrograms per liter, Us/cm is microsiemens per centimeter, °C is degrees Celsius, --
indicates insufficient number of constituent analyses, < indicates less than value shown]

Water-quality Standard

constituent N Maximum Minimum Mean Median deviation
Calcium, dissolved, mg/L .... 17 86.00 2.90 42.21 43.00 25.51
Magnesium, dissolved, mg/L .. 17 14 .09 5.02 4.3 3.77
Potassium, dissolved, mg/L .. 12 4.3 .6 2.22 1.85 1.14
Sodium, dissolved, mg/L ..... 13 55 5.2 25.2 20 16.55
Alkalinity as CaCO3, mg/L ... 5 406 15 169.6 126 154.94
Chloride, dissolved, mg/L ... 19 93 9.7 34.28 27 22.48
Sulfate, dissolved, mg/L .... 17 29 1.32 9.81 6 9.13
Specific conductance,

Ms/cm ...ovvvvnnnnnn N 7 628 114 345.43 339 177.38
pH, standard units .......... 15 8.05 6.5 7.56 7.8 .5
Nitrogen, nitrite plus

nitrate dissolved, mg/L ... 1 -~ -- -- <.01 -
Phosphate, ortho., dissolved,

MI/Leeeeieiiierninensensnes 0 - - - - --
Organic carbon, total, mg/L . 0 -- -- - -- -
Hardness, total as CaCO3,

mg/L..... teseteeneseneannas 18 220 16 102.17 107.5 62.54
Fluoride, dissolved, mg/L ... 18 0.5 .21 --
Silica, dissolved, mg/L ..... 13 40 6.6 21.31 20 11.14
Iron, total,pg/L ............ 7 710 80 408.57 350 248.29
Iron, dissolved, Wa/L ....... 4 5200 90 1477.5 310 2484.17
Manganese, total, Wg/L ...... 5 5900 30 1250 70 2600
Manganese, dissolved, Mg/L .. 2 610 200 405 405 -—-
Dissolved solids, residue

at 180°C, mg/L.....ccvnunne 15 762 63 262 227 168

infiltrates into and moves downgradient through the ground-water flow system
toward discharge areas, its chemical composition is modified by contact with
minerals in the sediment. The water-quality diagram in figure 21 generalizes
the chemical changes in ground water moving downgradient along a regional pre-
pumping flow path (Back, 1966). Water in recharge areas (A in fig. 21) is
dominated by a mixture of sodium, calcium, and magnesium cations and bicar-
bonate anions. The chemical character of ground water changes to a calcium-
bicarbonate water downgradient from the recharge areas (B in fig. 21). This
change in chemical character occurs from the dissolution of calcite in shell
material found within the sediments. If ground water becomes saturated with
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Table 6.--Summary of water-quality analyses from Yorktown-Eastover aquifer
in the York-James Peninsula

[N is number of samples, C, CO3 is calcium carbonate, mg/L is milligrams per 1iter, Yg/L is
micrograms per 1iter, Us/cm is microsiemens per centimeter, °C {s degrees Celsius, --
indicates insufficient number of constituent analyses, < indicates less than value shown]

Water-quality Standard

constituent N Maximum Minimum Mean Median deviation
Calcium, dissolved, mg/L .... 34 261.00 1.80 59.93 56.50 45.18
Magnesium, dissolved, mg/L .. 34 39 .1 5.82 3.45 8.02
Potassium, dissolved, mg/L .. 25 16 .8 4.4 2.6 4.11
Sodium, dissolved, mg/L ..... 26 804 3.5 86.84 20.5 182.84
Alkalinity as CaCO3, mg/L ... 11 294 12 154.18 167 82.79
Chloride, dissolved, mg/L ... 35 1190 3.1 96.47 21.5 248.53
Sulfate, dissolved, mg/L .... 35 119 1.13 16.24 9.9 21.32
Specific conductance,

HS/C o ovvviiinnnennannnnsns 18 4380 285 720.89 427 938.04
pH, standard units .......... 21 8.9 7.1 7.63 7.55 .42
Nitrogen as NO; + NO3,

dissolved, mg/L ............ 4 .25 <.01 -- .1 -
Phosphate, ortho., dissolved,

mg/L........ Ceereerieenes ces 5 .52 .01 - .09 -
Organic carbon, total, mg/L . 1 - -- -- 4,6 -
Hardness, total as CaCOj,

mg/L.......... Ceeesresesaaas 30 812 5. 170.71 165 139.14
Fluoride, dissolved, mg/L ... 29 .9 <.01 -- .1 --
Silica, dissolved, mg/L ..... 26 40 9.7 18.04 15.5 8.48
Iron, total, /L ........ . 11 8700 30 2909.09 710 3677.08
Iron, dissolved, Wg/L ....... 13 120 <.01 -- 20 --
Manganese, total, g/L ...... 3 210 40 123.33 120 85.05
Manganese, dissolved, W/L .. 2 170 110 140 140 --
Dissolved solids, residue

at 180°C, mg/L ....ovvvunnns 29 2280 108 328 248 390
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Table 7.--Summary of water-quality analyses from Chickahominy-Piney Point aquifer
in the York-James Peninsula

[N is number of samples, C, CO3 is calcium carbonate, mg/L is milligrams per 1iter, Yg/L is
micrograms per liter, Ys/cm is microsiemens per centimeter, °C is degrees Celsius, --
indicates insufficient number of constituent analyses, < indicates less than value shown]

Water-quality Standard

constituent N Max{mum Minimum Mean Median deviation
Calcium, dissolved, mg/L .... 64 99.00 1.10 19.96 19.00 16.67
Magnesium, dissolved, mg/L .. 64 100 .7 4.82 3 12.30
Potassium, dissolved, mg/L .. 59 83 1.4 10.38 8.5 10.49
Sodium, dissoived, mg/L ..... 59 3100 2.4 136.53 33 419.37
Alkalinity as CaCO3, mg/L ... 50 770 5 184.02 139 144.45
Chloride, dissolved, mg/L ... 69 4800 .5 118.51 4.2 589.92
Sulfate, dissolved, mg/L .... 67 470 1.6 16.34 7 56.91
Specific conductance,

VG = 47 3799 205 477.87 300 586.03
pH, standard units .......... 50 9.4 5.6 7.63 7.8 .73
Nitrogen as NO; + NO3,

dissolved, mg/L ........... 22 .35 <.01 - .03 -
Phosphate, ortho., dissolved,

A 42 .64 <.01 -- .03 --
Organic carbon, total, mg/L . 8 7.1 1.4 4.74 5.55 2.06
Hardness, total as CaCO3

mg/L..coeainnns Ceecsenrnens 66 140 6 59.72 56.5 37.53
Fluoride, dissolved, mg/L ... 67 3.2 .1 .73 .5 .65
Sil1ca, dissolved, mg/L ..... 62 71 2 38.45 39.02 16.2
Iron, total, Wg/L ....... . 12 2900 10 395.83 60 815.99

. Iron, dissolved, Wg/L ....... 32 1300 10 103.72 25 235.8
Manganese, total, Wg/L ...... 7 110 10 28.57 10 36.71
Manganese, dissolved, Jg/L .. 6 100 2 29 19 36.41
Dissolved solids, residue

at 180°C, mg/L .....ccvtnne 64 9120 20 460 224 1151
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Table 8--Summary of water-quality analyses from Aquia aquifer
in the York-James Peninsula

[N 1s number of samples, C, CO3 is calcium carbonate, mg/L is milligrams per liter, Wg/L is
micrograms per 1iter, Us/cm 1s microsiemens per centimeter, °C is degrees Celsuls, --
indicates insufficient number of constituent analyses, < indicates less than value shown]

Water-quatity Standard

constituent N Maximum Minimum Mean Median deviation
Calcium, dissolved, mg/L .... 124 82.00 <0.01 - 3.20 --
Magnesium, dissolved, mg/L .. 124 59 <.01 - 1.35 -
Potassium, dissolved, mg/L .. 113 62 1.3 10.81 10 7.41
Sodium, dissolved, mg/L ..... 120 3000 4.6 289.78 216.5 332.27
Alkalinity as CaC03, mg/L ... 65 521 49 314.23 331 85.27
Chloride, dissolved, mg/L ... 132 4400 .3 199.37 54.5 440.99
Sulfate, dissolved, mg/L .... 126 350 1.6 28.94 15 41
Specific conductance,

HS/CR . iiviiiiiiiiiiinenaen 61 5700 265 1278.18 1010 987.74
pH, standard units .......... 60 9.1 6.4 7.84 7.95 .52
Nitrogen as NO, + NO3,

dissolved, mg/L ........... 23 .52 <.01 - .1 -
Phosphate, ortho., dissolved,

7 52 2.1 <.01 - .45 --
Organic carbon, total, mg/L . 4 6.4 2.4 5.15 5.9 1.85
Hardness, total as CaC0j,

L 129 450 1.9 26.57 13 49.52
Fluoride, dissolved, mg/L ... 121 5.4 .1 2.28 2.4 1.27
Silica, dissolved, mg/L ..... 117 52 2.5 20.21 19 8.19
Iron, total, Wg/L............ 21 8700 .02 724.3 100 2018.41
Iron, dissolved, /L ....... 52 8200 3 449.9 45 1573.43
Manganese, total, Wg/L ...... 3 220 10 86.67 30 115.9
Manganese, dissolved, Wg/L .. 4 200 12 65 25 89.97
Dissolved solids, residue

at 180°C, mg/L ......c.eenn 118 7960 162 761 484 865
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Table 9.--Summary of water-quality analyses from upper Potomac aquifer
in _the York-James Peninsula

[N is number of samples, C; CO3 mg/L is milligrams per 1iter, Yg/L s micrograms per 1iter,
Hs/cm 1s microsiemens per centimeter, °C 1s degrees Celsius, -- indicates insufficient
number of constituent analyses, < indicates less than value shown]

Water-quality Standard

constituent N Maximum Minimum Mean Median deviation
Calcium, dissolved, mg/L .... 23 38.00 0.50 11.15 8.00 10.27
Magnesium, dissolved, mg/L .. 23 16 .2 3.5 2.7 3.39
Potassium, dissolved, mg/L .. 20 20 1.5 10.42 11 4.72
Sodium, dissolved, mg/L ..... 20 600 7.9 188.29 110 187.44
Alkalinity as CaCO3, mg/L ... 16 385 85 235.81 219 87.68
Chloride, dissolved, mg/L ... 28 2200 2.4 258.74 30 460.66
Sulfate, dissolved, mg/L .... 28 300 .6 37.71 17 57.97
Specific conductance,

BS/CM ooveriiinnnrnncennns 15 2450 192 816.8 480 721.93
pH, standard units .......... 13 8.4 6.9 7.91 8 .41
Nitrogen as NO; + NOj,

dissolved, mg/L ....... iee 6 .45 <.01 - .07 -
Phosphate, ortho., dissolved,

1 N 42 2.6 <.01 - .37 -
Organic carbon, total, mg/L . 0 -- -- -- - --
Hardness, total as CaCO3,

e 11 28 240 2. 44.58 27.15 51.1
Fluoride, dissolved, mg/L ... 27 5.5 .2 2.01 1.8 1.49
S1lica, dissolved, mg/L ..... 23 48 5.4 27.44 28 12.28
Iron, total, Wg/L............ 5 18000 70 4122 260 7809.68
Iron, dissolved, /L ....... 9 140 10 50.56 38 42.53
Manganese, total, Wg/L ...... 3 20 8 16 20 6.93
Manganese, dissolved, W/t .. 2 14 2 8 - --
Dissolved solids, residue

at 180°C, mg/L ...vvveviens 23 2500 260 920 520 884
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Table 10.--Summary of water-quality analyses from middle Potomac aquifer

in the York-James Peninsula

[N 1s number of samples, C, CO3 mg/L 1s milligrams per 1iter, Yg/L 1s micrograms per 1iter,
Us/cm 1s microsiemens per centimeter, °*C is degrees Celsius, -- 1ndicates insufficient
number of constituent analyses, < indicates less than value shown]

Water-quality Standard

constituent N Maximum Minimum Mean Median deviation
Calcium, dissolved, mg/L .... 107 45.00 <0.01 - 4.00 -
Magnesium, dissolved, mg/L .. 106 14 <.01 - 1.15 -
Potassium, dissolved, mg/L .. 99 24 .4 9.72 8.6 5.28
Sodium, dissolved, mg/L ..... 105 940 2.4 99.14 68 127.71
Alkalinity as CaCO3, mg/L ... 87 605 8 177.6 160 87.33
Chloride, dissolved, mg/L ... 115 1300 .01 -- 4 -
Sulfate, dissolved, mg/L .... 110 80.2 2 14.36 12 12.25
Specific conductance,

HS/CR .oitiiiiiieiinnnnns 69 5000 110 485.48 345 618.43
pH, standard units .......... 75 8.6 5.8 7.8 7.85 .46
Nitrogen as NO; + NO3,

dissolved, mg/L ........... . 12 0.66 .01 -- .05 -
Phosphate, ortho., dissolved,

. P 46 2.2 <.01 -- .26 --
Organic carbon, total, mg/L . 4 4 .3 1.72 1.3 1.8
Hardness, total as CaCOj,

L 2 S 1 Y 150 1 33.21 12 40.19
Fluoride, dissolved, mg/L ... 109 6.1 .1 1.13 .5 1.31
Silica, dissolved, mg/l ..... 86 45 2.9 25.69 26.5 8.82
Iron, total, Pg/L............ 11 3900 20 768.18 300 1190.91
Iron, dissolved, Wg/L ....... 36 2400 <.01 -- 35 196.34
Manganese, total, yg/L ...... 6 100 10 48.33 40 29.94
Manganese, dissolved, Jg/L .. 6 70 5 38.17 38 27.56
Dissolved solids, residue

at 180°C, mg/L ....ccvuenn 92 2660 115 361 231 383
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Table 11.--Summary of water-quality analyses from lower Potomac aquifer
in the York-James Peninsula

[N 1s number of sampies, C, CO3 is caicium carbonate, mg/L 1s milligrams per 1iter, Jg/L
is micrograms per liter, Us/cm is microsiemens per centimeter, °C {s degrees Celsius, --
indicates insufficient number of constituent analyses, < indicates less than values shown]

Water-quality Standard

constituent N Max imum Minimum Mean Median deviation
Calcium, dissolved, mg/L .... 14 45.00 1.00 9.31 5.00 13.11
Magnesium, dissolved, mg/L .. 14 20 <.01 -- 1 -
Potassium, dissolved, mg/L .. 12 19 3.9 7.56 5.2 4.77
Sodium, dissolved, mg/L ..... 12 1400 41 325 126 398.3
Alkalinity as CaCOj, mg/L ... 12 528 130 293 237 157.01
Chioride, dissolved, mg/L ... 14 2000 .1 340 106 559.25
Sulfate, dissolved, mg/L .... 14 120 8 42.11 31.75 34.09
Specific conductance,

HS/CB «ivviiiiiinnrenncnans 8 6000 308 1809.75 1135 1938.56
pH, standard units .......... 12 8.4 7.4 7.95 7.95 0.31
Nitrogen as NO; + NO3,

dissolved, mg/L ........... 3 <0.01 <.01 -- <.01 --
Phosphate, ortho., dissolved,

mg/L .oiiiinnnn, Ceisereeane 3 1.1 .09 .56 .5 .51
Organic carbon, total, mg/L . 2 1.5 .6 1.05 1.05 --
Hardness, total as CaCOj3,

mg/L ....... feeens ceeeranen 14 190 4 34.72 20.5 47.46
Fluoride, dissolved, mg/L ... 13 3 .3 1.45 1.2 1.2
Silica, dissoived, mg/L ..... 10 32 11 20.59 18.06 7.66
Iron, total, Wg/L ...ccvvvnns 4 5000 440 2610 2500 2231.98
Iron, dissolved, Wg/L ....... 10 2700 <.01 -- 40 196.34
Manganese, total, Mg/L ...... 4 150 10 57.5 35 62.92
Manganese, dissolved, W/L .. 5 810 17 209.4 40 339.1
Dissolved solids, residue

at 180 °C, mg/L...ccvverunnn 10 3860 172 1227 1026 1146
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Figure 21. Change in relative chemical composition of ground water along
typical prepumping flow path in York-James Peninsula.
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calcium carbonate, the mineral calcite precipitates, forming hard, indurated
layers, such as are present in the Chickahominy-Piney Point aquifer. As
ground water continues to move along the flow path, it interacts with cation-
exchanging sediments. These sediments remove calcium dissolved in the ground
water and replace it with sodium. The result of this exchange process is a
sodium-bicarbonate water (C in fig. 21). This is the dominant water type in
the fresh ground-water flow system of the York-James Peninsula. Near the end
of the flow path, ground water becomes altered again as it intermixes with
salty ground water, yielding a sodium-chloride water (D in fig. 21). As salty
water begins to dominate, the ground water becomes unsuitable for potable use.

Water-quality analyses were selected from the western, central, and
eastern regions of the study area to document changes in the chemical com-
position of water quality for each aquifer. Characteristic changes in the
water quality within each aquifer are illustrated by water-quality diagrams in
figures 22-27. Throughout the western region of the study area aquifer-
outcrop areas abound in all aquifers except the lower Potomac aquifer. These
aquifers are characterized by a mixed sodium-calcium-magnesium-bicarbonate
type water. The lower Potomac aquifer, which does not crop out, receives no
direct recharge from precipitation and a sodium-bicarbonate type water predo-
minates. 1In the central region of the of the study area, the Yorktown-
Eastover and Chickahominy-Piney Point aquifers contain abundant shell material
and are characterized by a calcium-bicarbonate type water; the Aquia, upper
Potomac, and middle Potomac aquifers by a sodium-bicarbonate type water; and
the lower Potomac aquifer by an intermediate sodium-bicarbonate type and a
sodium-chloride type water. 1In the eastern region of the study area, the
Columbia aquifer is characterized by a mixed sodium-calcium-magnesium-
bicarbonate type water; the Yorktown-Eastover and Chickahominy-Piney Point
aquifers by a sodium-bicarbonate type water; and the Aquia, upper Potomac,
middle Potomac, and lower Potomac aquifers by a sodium-chloride type water.

Vertical differences in the quality of ground water among aquifers, at
research stations RS-1 and RS-2, are illustrated in figures 28 and 29, respec-
tively. Interestingly, these differences follow the general pattern of chemi-
cal evolution expected along lateral flow paths of individual aquifers. At
RS-1 (fig. 28), water in the Yorktown-Eastover and Chickahominy-Piney Point
aquifers contain a calcium-bicarbonate type water; the Aquia, upper Potomac,
and middle Potomac aquifers a sodium-bicarbonate type water; and the lower
Potomac aquifer an intermediate between a sodium-bicarbonate type water and a
sodium-chloride type water (fig. 28). At RS-2 (fig. 29), the Columbia aquifer
contains a calcium-bicarbonate type water; the Yorktown-Eastover and
Chickahominy-Piney Point aquifers a sodium-bicarbonate type water; and the
upper Potomac, middle Potomac, and lower Potomac aquifers a sodium-chloride
type water. At greater depths water is more evolved chemically because the
distance travelled along a flow path is proportionally greater. Thus, at any
geographical location in the peninsula, the water quality of an aquifer
generally depends on the distance from the Fall Line and the depth of the
aquifer. The difference in water quality downward through the sediment at
RS-1 (fig. 28) is slightly different than the generalized chemical changes in
ground water (fig. 21). This deviation may be a result of natural conditions
or of the alteration of regional flow patterns within aquifers by recent
ground-water withdrawals.

The U.S. Environmental Protection Agency (1976) and the U.S. Public
Health Service (1962) recommends limits for constituent concentrations in
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Figure 22. Relative chemical composition of ground water in Yorktown-Eastover
aquifer.
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Figure 23. Relative chemical composition of ground water in Chickahominy-Piney Point
aquifer.
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Figure 24. Relative chemical composition of ground water in Aquia aquifer.
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Figure 25. Relative chemical composition of ground water in upper Potomac
aquifer.
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Figure 26. Relative chemical composition of ground water in middle Potomac
aquifer.
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drinking water to safeguard public health and welfare. The recommended limits
for dissolved-constituent concentrations of concern in the York-James
Peninsula are listed in table 12. A chloride concentration greater than 250
mg/L (milligrams per liter) imparts a salty taste to water and is undesirable
for potable use. A source of chloride is decomposition of minerals in the
sediment, but concentrations are greatly increased by the presence of salty
ground-water.

Dissolved iron concentrations greater than 0.3 mg/L results in
stains on plumbing fixtures, cooking utensils, and laundry. Dissolved iron
often occurs in the reduced state (ferrous iron) and, when exposed to oxygen,
oxidizes to a rust-colored particulate form. A major source of dissolved iron
is the decomposition of minerals in the sediment.

A dissolved solids concentration greater than 500 mg/L imparts a minera-
lized taste to water and is undesirable for potable use. Dissolved solids
include all constituents dissolved in the water and, depending on the dissolved
constituents, can result in deposits in pipes and pumps or can cause corrosion
of plumbing parts. A source of dissolved solids is the decomposition of
minerals in the sediment, but concentrations are greatly increased by the pre-
sence of salty water. Fluoride concentrations greater than 1.8 mg/L result in
objectionable mottling of teeth. The source of fluoride is unknown, but {is
assumed to be either the results of decomposition of or anion exchange with
fluoride-containing minerals in the sediment.

Excessive hardness and elevated sodium concentrations also are potential
ground-water quality problems but are not yet included in governmental regu-
lations. Hardness, defined as the concentration of divalent metallic ioms in
water and commonly calculated as the sum of the concentrations of calcium and
magnesium, usually is expressed as the concentration of calcium carbonate
that would produce an equivalent hardness. Hardness bonds organic molecules
in soap to form curds, thus reducing the effectiveness of soap as a cleanser.
Durfor and Becker (1964) developed the classification listed in table 13 to
describe hardness. Hardness becomes objectionable for ordinary domestic use
at concentrations greater than 120 mg/L. A sodium concentration greater than
270 mg/L can cause health problems for people on restricted sodium diets. A
source of sodium is the decomposition of and cation exchange with minerals
containing sodium. Concentrations of sodium are greatly increased by the pre-
sence of salty ground water. The origin of sodium in ground water is
illustrated in figure 30. The ratio of sodium-to-chloride concentrations in
aquifers at RS-1 are plotted in reference to a line representing the sodium-to-
chloride ratio equivalent to that of sea water. The initial displacement of
the aquifer-water line to the right of the sea-water line is attributed to
sodium present as a product of mineral decomposition and cation exchange.
After contact with salty water, the line plots parallel to the sodium-chloride

equivalent of sea water.

Wells selected from the western, central, and eastern regions of the
study area identify the water-quality problems in each aquifer. A statistical
summary of the water-quality constituents of concern are listed for each
aquifer by region in table 14. Water-quality problems for each aquifer, iden-
tified by median values in table 14, are summarized by region in table 15.

The table shows that in the eastern region, only the Yorktown-Eastover and
Columbia aquifers contain water that is usable as a potable supply; however,
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Table 12.--Pertinent dissolved constituent 1imits for drinking water

{Recommended 1imit for fluoride at average annual air temperature
of 17.7 - 21.9° Celcius; mg/L is milligrams per 1iter]

Recommended!
Substance 1imit
(mg/L)
Chloride 250
Dissolved iron .3
Dissolved solids 500
Fluoride 1.8

1 y.s. Environmental Protection Agency (1976) and U.S. Public Health Service
(1962)

Table 13.--Classification of hardness

[Adapted from Durfor and Becker (1964), mg/L is milligrams
per 1iter; > indicates greater than]

Hardness range

(mg/L as calcium carbonate) Description
0-60 ...connene crieerecaas Soft
60 - 120 ...cvviniiinnnnnnns Moderately hard
120 - 180 ...iieiininnennonnns Hard
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Table l4. --sunan
[Constituent

is in nt.mdu:d uutl,

5 EXTERCTor StERsTVET TYorw TN T
a dash indicates insufficient mmber of constituent analysis

Aqui fer Western Region Central Region Eastern Region
onstituent Number  Median Minimum Maximum  Mumber  Median Minimm Maximum Number  Median Minimm Maximum
of wells value value value of wells value wvalue value of wells valus value value
Columbia “dium 2 23 13 2
Mloride . . 2 39 26 52
Aqui fer not Aqui fer used 1 1.3 - -
ardness present only for 2 203 185 220
Fluwride domestic supply 2 0,15 0.t 0.2
stsolved 1 260 - -
Dlssolved 2 306 91 321
solids
Calcium 2 76 67 84
Bicarbonate 2 p£)) 176 298
Constituent MNumber Median Minimsm Maximum  Number Median Minimm Maximm Number  Median Minimm i
of wells value value value of wells value value value of wells value value value
Yorktown- Sodium 2 1.9 4.7 11 2 438 71 804
Eastover Chloride 5 9.0 3.1 20 4 103 17 950
Aqui fer used 5 7.3 5.6 1.5 1 8.1 - -~
rdness only for 5 110 8 223 4 203 185 220
Fluoride dmn:xc supply 5 0.1 0.0 0.1 3 0.55 0.4 0.6
Dusolved 4 54 10 1 1 15 - -
Dusolved 5 144 108 264 3 566 300 2280
solids
Calcium 5 44 2 8&) 2 35 29 58
Bi carbonate 5 140 9 2 376 242 625
Constituent Number  Median Minimm Maximm  Number  Median Minimm Maximum Number  Median Minimm Maximm
of wells value value value of wells value value  value of wells value value value
Chickahominy- Sodium 1 36 - - 3 289 2.4 350 3 890 30 ,100
Piney Point (hloride 1 3.9 - - 37 4.2 0.5 290 3 1,000 160 ,800
1 7.8 - - 0 1.6 5.6 8.4 3 8.2 7.3 9.4
rdness 1 9% - - 37 64 12 140 2 18 14 22
Fluoride 1 0.3 - - 37 0.5 0.t 3.0 3 1.2 0.7 2.2
Digsolved 0 - - - 20 18.5 10 20 2 19% 30 360
iron
Diigglved 1 219 - - k) 206 20 940 3 2,300 1,000 9,120
solids
Calciua 1 24 - -= 35 20.7 2.0 48 3 4.7 L1 9
Bi carbonate 1 - - 37 37 160 6 426 3 19% 640 %1
Constituent Number  Median Minimm “aximm  Number  Median Minimm Maximm Nymber  “edian Minimm Maximm
of wells value value value of wells value value value of wells value wvalue value
Aquia Sodium 1 % - - 6 )ng 19 191 2 %0 0 600
Chloride 1 2.9 - - 1l 3.4 375 4 U8 7 2,200
1 1.6 - - ) 8,2 1.4 8.3 0 - -
ardness 1 150 - - 11 32 16 110 4 49 7.9 240
Fluoride 1 0.5 - - 10 1.3 0.4 2.2 4 1.3 0.5 2.4
Dissolved 0 - - - 4 28.5 10 70 2 50 10 90
ron
Di ?sg:ved 0 270 - - 8 338 162 553 3 1,530 295 2,32
oli
Calcim 1 2 - - 8 9.1 42 38 3 8 46 20
Bicarbonate 1 210 - - 1t 330 122 40 4 503 2% 724
Constituent Number  Median Minimm Maximm  Number Median Minimm Maximum Number  Median Minimm Maximm
of wells value value value of wells wvalue value  value of wells value value value
Upper Potomac  Sodium 1 1.8 - - 12 285 19 380 9 420 150 3,000
Chloride 1 13 - - 14 180 15 330 11 390 6.9 4,400
1 6.4 - -— 10 7.8 1.3 8.3 6 1.9 7.0 9.1
rdness 1 2 - - 14 2 13 100 1 2 6.0 450
Flworide 1 0.2 - - 12 1.6 1.0 2.4 10 2.7 0.2 3.7
Di ssolved 0 - - - 7 50 20 300 5 60 3.0 8,
iron
0i ?agl\nd 1 166 - - 13 ns 162 957 9 1,241 380 7,960
solids
Calcium 1 2% - - 13 4.6 3.2 38 11 3.9 1.6 R
Bicarbonate 1 60 - - 14 % 12 427 11 414 270 638
Constituent Mumber Median Minimm Maximm  Number  Median Minimsm Maximm Median Minimum Mexirum
of wells value value value of wells value value value of wells value value value
Middle Potomac Sodium 38 52 1 160 k] 220 100 gzo 2 s 489 940
hloride 40 3.0 0.8 27 3 ” 6 2 995 49 1,300
% 1.7 6.6 8.6 2 1.7 7.5 7.9 1 1.4 - --
k)4 26 1.0 135 3 8 8 b 2 59 22 95
Fluoride 39 0.3 .01 2.2 3 1.9 1.1 2.1 2 17 1.2 2.2
Dusolwzd 12 21 5.0 1, 3 200 170 320 1 2,400 -~ -
Dt:gglved 29 199 126 262 3 566 310 664 2 1,982 1,305 2,660
solids
Calcium 37 8.4 0.0 38 3 3.0 2.5 21 12.6 5.2 20
Bicarbonata 39 175 36 240 3 446 320 450 2 420 400 440
Constituent Nunber  Median Minimum Maximm  NMumber Median Minimm Maximm Number  Median Minims Maximm
of wells value wvalue value of wells value value value of wells value value value
Lower Potomac  Sodium 2 41 66 1 450 - - 1 1,400 -~ -
Chloride 2 1.6 1.0 2.1 1 340 - - 1 2,000 - -
gl 2 8.0 Z.s 8 4 1 1.8 - - 1 .1 - -
ardness 2 2 0 1 18 - -- 1 0 - -
Fluoride 2 0.4 0.4 0 4 1 0.3 - - 1 0.7 - -~
Di ssolved 2 175 0.0 350 1 500 - -- 1 1,200 -- -
ron
Di ssolved 1 172 - - 1 1,190 - - 1 3,860 -- -
solids
Calcium 2 5.2 1.0 9.3 1 5.1 - - 1 45.0 - -
Bicarbonate 2 190 159 221 1 590 bl - 1 297 - -
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Table 15.--Summary of ground-water quality problems in aquifers

of the York-James Peninsula by region

Aquifer Western region Central region Eastern region
Columbia Aquifer not Aquifer used Very hard water
present only for domestic
supply
Yorktown- Aquifer used Moderately hard Hard water
Eastover only for domestic water Calcite precipitation
supply
Chickahominy- Moderately hard Moderately hard Elevated sodium

Piney Point

Aquia

Upper Potomac

Middle
Potomac

Lower
Potomac

water
Calcite
precipitation

Hard water

Aquifer not
present

No apparent
problems

No apparent
problems

water

Calcite
precipitation

Elevated dissolved
solids
Elevated fluoride

Elevated fluoride
Elevated dissolved
solids

Elevated sodium
Elevated chloride
Elevated dissolved
solids

Elevated dissolved
iron

Elevated chloride
Elevated dissolved solids
Calcite precipitation

Elevated sodium

Elevated chloride
Elevated dissolved solids
Calcite precipitation

Elevated sodium

Elevated chloride
Elevated dissolved solids
Elevated fluoride

Elevated sodium

Elevated chloride
Elevated dissolved solids
Elevated fluoride
Elevated dissolved {ron

Elevated sodium

Very hard water

Elevated chioride
Elevated dissolved solids
Elevated dissolved iron
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water in these aquifers commonly is hard to very hard. In the central region,
all aquifers, except the lower Potomac, contain water that is generally usable
as a potable supply; however, local quality problems do exist. Common local
problems are high fluoride and dissolved solids in the middle Potomac and
upper Potomac aquifers, and hard water in the Chickahominy-Piney Point and
Yorktown-Eastover aquifers. In the western region, the lower Potomac and
middle Potomac aquifers contain what is considered the best-quality water in
the study area. Water in the Chickahominy-Piney Point and Aquia aquifers is
moderately hard to hard.

Limit lines in figures 31-36 identify regions within each aquifer where
recommended limits of selected water-quality constituents are exceeded. Limit
lines were constructed from the data statistically summarized in tables 5-11.
Dissolved iron is a problem in many local areas but cannot be regionalized
within the aquifers. 1In some figures, point data exceeding recommended limits
are identified where 1limit lines could not be determined because of insuf-
ficient data. The Yorktown-Eastover aquifer (fig. 31) contains high con-
centrations of chloride and sodium in eastern areas fringing the Chesapeake
Bay, and high concentrations of hardness in the eastern half of the peninsula.
The Chickahominy-Piney Point aquifer (fig. 32) contains elevated con-
centrations of chloride, sodium, dissolved solids, and fluoride in the eastern
region, and hardness is a problem in parts of the western and central regions.
The Aquia aquifer (fig. 33) contains high concentrations of chloride, sodium,
dissolved solids, and fluoride in the eastern region, and hardness is a
problem in the western region. The upper Potomac aquifer (fig. 34) contains
high concentrations of chloride, sodium, and dissolved solids in the eastern
region. Fluoride is present in elevated concentrations in the central and
eastern regions, and hardness is a problem only in the extreme eastern region
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city of Newport News Research Station RS-2.
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where the water is highly mineralized. The middle Potomac aquifer (fig. 35)
contains elevated concentrations of chloride, sodium, and dissolved solids in
the eastern region, and hardness is a problem in the western region. Numerous
local areas within this aquifer contain water with elevated concentrations of
fluoride and dissolved solids. The lower Potomac aquifer (fig. 36) contains
water with high concentrations of chloride, sodium, and dissolved solids in
the eastern and central regions, and hardness is a problem in the eastern
region. Overall, the ground-water quality throughout the study area is best
in the western and central regions. For the most part, water in the eastern
region is salty and only the upper two aquifers, the Columbia and the
Yorktown-Eastover, contain potable water.

Hydraulic Characteristics

The ability of a ground-water flow system to store and transmit water is
determined by the hydraulic characteristics of the aquifers and confining
units. Hydraulic characteristics affect the water-yielding capacity of wells,
the magnitude of water-level decline associated with pumpage, and the volume and
velocity of water flowing through an aquifer. Transmissivity is the principal
hydraulic characteristic that measures the ability of water to flow through an
aquifer. Vertical leakance is the principal hydraulic characteristic that
measures the ability of water to flow through a confining unit. Trans-
missivity and vertical leakance depend on the physical properties of the sedi-
ment through which water moves. Transmissivity is the product of the
horizontal (bed-parallel) hydraulic conductivity and the saturated thickness
of the aquifer. Vertical leakance is the quotient of the vertical
(bed-normal) hydraulic conductivity and the thickness of the confining unit.
Hydraulic conductivity is the volume of water that will flow, in a unit time,
under a unit hydraulic gradient, through a unit area of sediment. Hydraulic
gradient is the change in static water level (hydraulic head) per unit
distance in a given direction.

Storage coefficient is the principal hydraulic characteristic that
measures the ability of an aquifer to store or release water. Storage coef-
ficient is the product of the specific storage and the saturated thickness of
the aquifer. Specific storage is the volume of water released from or taken
into storage per unit volume of aquifer per unit change in hydraulic head.
The following sections describe the methods used to determine the hydraulic
characteristics of aquifers and confining units for the development of a
digital flow model used in the assessment of ground-water flow. It should be
noted that much of the data analyzed to estimate hydraulic characteristics
were obtained from drillers' records. Because the method of data collection
and data analysis and the completeness of record varied from one driller to
another, the quality of the data is considered to vary as well.

Aquifer Tests

Analysis of aquifer-test data gives quantitative values for aquifer
transmissivity and storage. An aquifer test involves analyzing the change in
water level with time caused by imposing a stress upon an aquifer. A common
method of imposing stress is to pump water from a well and measure the decline
in water level that results in the pumping well and (or) other nearby obser-
vation wells. After pumping water from the aquifer for a specified time, pre-
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ferably more than 24 hours, the pump is turned off, and the rise in water
level is measured as hydraulic head in the aquifer returns to its prepumped
level.

Two general types of methods for analyzing aquifer-test data from confined
aquifers are used. One type assumes that all water pumped from a confined
aquifer is obtained from within the aquifer and is known as "non-leaky
methods." The second type assumes that water recharges the confined aquifer
through an overlying and (or) underlying confining unit(s) and is known as
"leaky methods." A transmissivity computed by a leaky method is lower
than one computed by a non-leaky method.

Few aquifer tests are available that actually reflect the change in water
level within an individual aquifer because most of the wells which have been
tested are open to more than one aquifer. Aquifer transmissivity and storage
coefficients computed with aquifer-test data from an individual aquifer are
summarized by method in table 16. Leaky-method transmissivities are believed
to more closely approximate actual values. From these data, the ability to
describe spatial differences in the distribution of hydraulic characteristics
within an aquifer is limited; therefore, the following method supplements
aquifer-test results.

Specific-Capacity Tests

Specific capacity is most commonly used to determine the ability of a
well to yield water, but also can be used to estimate transmissivity if the
value of specific capacity becomes constant over time. The specific capacity
of a well is the quotient of the rate of discharge of water from a well and
the change in water level within the well that results from the pumpage.
Transmissivities were calculated from specific capacities compiled for the
model area by an iterative procedure which uses the following equation given
by Walton (1970):

[Q/s = T/(264 log ((Tt)/2,693 r2s)) - 65.5)] (1)

where

Q is well discharge in gallons per minute;

8 is the change in water level within the well in feet;

T is transmissivity of the aquifer in gallons per day per foot;

t is length of pumping in days;

r is the radius of the pumping well in feet;
and

S is specific yield if the aquifer is unconfined and storage coefficient
if the aquifer is confined.

The procedure required an initial estimate of T which is calculated with
the following equation given by Theis (1963) and Brown (1963):

T = Q/s [K-264 log (5S) + 264 log (t)] (2
where
K is a factor equal to:

-66 - 264 log (3.74r2 x 10-6) if the aquifer is unconfined
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and
-66 - 264 log (3.74r2 x 10-9) if the aquifer in confined.

The value of S is assumed equal to 0.20 for unconfined aquifers and
1x10~% for confined aquifers. Before substitution into equation 2, S is
multiplied by 1,000 for confined aquifers. Specific capacity, Q/s, is calcu-
lated by substituting the initial estimate of transmissivity into equation 1.
The calculated specific capacity is then compared to the measured value. If
the difference is less than 1X10-5 percent, the calculated transmissivity is
assumed reasonable and the procedure is halted. If the difference is greater
than 1 X 10-3 percent, the transmissivity is adjusted by the equation:

T =T+ (T x P) (3)
where
P is percent difference between calculated and measured values of Q/s.

The adjusted transmissivity is substituted into equation 1 and specific
capacity is recalculated. The difference between the calculated and measured
specific capacity again is compared and the procedure is either repeated or
halted accordingly. The horizontal hydraulic conductivity was computed from
the transmissivity by the equation:

Kp = T/m (4)

where

Ky is the horizontal hydraulic conductivity of the aquifer in -feet per

day;
and

m is the saturated thickness of the aquifer in feet.

A summary of well yields, specific capacities, transmissivities, and
hydraulic conductivities derived from specific-capacity tests is given by

aquifer in table 17. The table also lists specific capacities that are
adjusted for partial penetration by the following equation (Turcan, 1963):

Qa/s = Q/s[Ky(1+7 /r/(2Kpm)cos((K,W)/2))] (5)
where
Qa/s is the adjusted specific capacity in gallons per
minute per foot of water-level decline;
and

K is the ratio of screen length to saturated aquifer
thickness.
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Table 17.--Summary statistics of well yleld, specific capacity, transmiss
conductivity derived TFéﬁ'%EEETfic caga61¥§ Tests in t

[gal/m1n is %allons per minute, gal/m!n/ft 1s gallons per minute per foot,
f ft/d 1s feet per day, Number is number of wells]

/d 1s fee

squared per day,

vity, and hydraulic
the mo area

Well yield Specific capacity Transm1551v1ty Hydraulic conductivity
(gal/min) (gal/min/ft) (fte/d) (ft/d)
Aquifer
Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted
Columbia Maximum 50 16.7 35.5 3,790 8,500 92.7 170
Minimum 3 .2 1.7 104 328 1.7 6.4
Median 30 1.2 5.0 223 872 6.2 24.0
Mean 29.6 3.5 8.5 844 1,810 28.1 50.8
Number 10 10 8 8 8 8
Yorktown-  Maximum 450 31.6 123 10,100 44,200 156 353
Eastover Minimum 4 .1 .2 23 40 .3 .7
Median 50 1.9 11.9 567 3,840 4.7 25.1
Mean 82.3 4.4 20.5 1,470 6,900 13.0 54,
Number 63 65 59 60 59 59 59
Chicka- Maximum 316 48 63.2 16,600 22,100 331 442
hom{ny- Minimum 5 .2 .2 54 67 1.2 1.5
Piney Median 82.5 2.7 8.9 990 2,740 24.3 52.7
Point Mean 109.4 7.7 12.6 2,700 4,230 60.4 87.3
Number 38 40 35 37 35 35 35
Aquia Maximum 550 21.6 23.4 6,980 8,100 189 219
Minimum 12 .2 .2 46 40 1.2 1.8
Median 186 3.8 5.5 1,130 1,670 36.2 55.2
Mean 210 5.5 7.3 1,670 2,270 51.3 66.8
Number 18 18 18 18 18 18 18
Upper Maximum 1,450 83.3 68 24,300 24,700 385.5 344
Potomac Minimum 20 .6 .7 170 194 2.8 4.0
Median 245 6.9 12.0 2,300 3,740 36.0 59.2
Mean 391 11.2 16.9 3,650 5,490 58.8 82.5
Number 102 102 99 100 99 99 99
Middie Maximum 1,083 19.4 111 6,660 41,900 34.7 262
Potomac Minimum 3.0 .1 .2 20 60 .2 .7
Median 62.0 1.6 3.4 450 1,010 4.7 10.9
Mean 160 3.0 10.9 870 3,750 7.2 23.4
Number 64 74 73 71 70 70 70
Lower Maximum 2,000 11.5 11.6 3,550 3,560 50.7 50.7
Potomac Minimum 100 .5 .5 120 120 3.4 3.4
Median 554 5.9 7.4 1,990 2,250 15.9 18.0
Mean 802 5.6 6.7 1,950 2,040 20.2 21.0
Number 6 7 6 6 6 6 6
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The table indicates that the highest yielding wells are in the Potomac
aquifers. Transmissivities computed from specific-capacity tests compare
reasonably well with values computed from aquifer tests in areas where both
types of data are available, suggesting that specific capacities may be
appropriate for estimating regional transmissivities in areas lacking aquifer-
test data.

Laboratory Analysis of Core Samples

While the previous methods discussed provide measurements of hydraulic
characteristics averaged over large areas of aquifers or confining units, core
analyses provide values specific to a site and sediment sample. Sediment
cores were analyzed to provide estimates of the vertical hydraulic conduc-
tivity and mineralogy of confining units and clay layers within aquifers.

Core samples were collected during the drilling of the two research stations
and were analyzed by the U.S. Army Corps of Engineers Hydraulic Laboratory in
Cincinnati, Ohio. The samples analyzed consisted of undisturbed sediment
cores that averaged two-and-one-half inches in diameter by one foot in length.
Cores were collected in order to compare vertical hydraulic conductivity in
confining-unit sediments of fluvial origin to sediments of marine origin and
to identify clay types. Core analyses also provided data to substantiate ver-
tical hydraulic conductivity values for confining units used in the model
developed by Harsh and Laczniak (1986). Sample depth, hydrogeologic unit,
laboratory vertical hydraulic conductivity, and basic mineralogy of the core
sediment are shown in table 18 for each research station. Results of labora-
tory hydraulic conductivity compare favorably with values used for model simu-
latjon by Harsh and Laczniak (1986). Confining unit sediments of fluvial
origin appear to be tighter (less permeable) than those of marine origin,
however, the lower fluvial confining units also might be tighter because of
greater over-burden pressures.

58



O3juLLoRY ‘O3}[L} YILJ-uo| ‘e3}3dems 68 T g-0TX1°8 §°90/- €°S0/-  Jejjnbe dewojog Jemol up Kefd
8311401Ud Yd}J

~uoJd| ‘e3iLi} Ydl4-uos} ‘e3j3oomg 1£] 91 g-0Tx9°¢ L°8€9 0°L€9- Jejinbe dewojod e ppim uj Keyd
ojjuioey ‘e3jfl} yspJd-uol} ‘e3jjoems 14:] 91 g-01x92°1 0°S1E 0°#1€  3tun Bujuyjuod osoq|Jen-KowefueN
oljuiioex ‘e3jl|} ydlJ-uos} ‘e33oems ¥6 9 ¢-01X95°2 ¥°L0€-  1°90£- 3iun Bujuyjuod osoqiien-Kowe fueN
ojjupioey ‘e3fit} yais-uod} ‘e3j3oems 66 1 9-01X88°S 1°292- 6°092- 3iun Bujujjuod 3JeAfe)
(4opao Bujsessdep uy) Keyd pues (p733) wo33oq do} s3tun o4B6oj0eBoipAH
sdnoub edk3-Ael) JuUedJed 3Juedled KA3LAL3oNpuod T ([eAe| eeS S| @njep '3e9) uf)
3} Ineapky yidep edwes
[ea}3d40eA
Ki0jed0qe

2-S¥ -- UOL3RIS Youeesey SMON 3JodmeN

o3uoone b
/83LLLE ‘O31J01UD Yo|J-uos| ‘e3|3dems SL 14 g-01X10°2 0°8E€~ G°OEE- 34un Bujujjuod dewolod © PP IN
(ede43)
ejjujloey ‘ejjuodne|bseyitll ‘e3i3o0ms 09 oy p-0IX6E°S 6°2v1- T°TH1- 34un Bujujuod 3JeAfe)
(4epto Bujseeusep uy) ke pues (p/33) mojjoq __ doj s3jun d1BogoeBo.ipAH
sdnoub edK3-Ae() U494 juedsed K3jAL3onpuod [ |eAe| eas S| wniep ‘399) ul)
3} tneaphy yidep edwes
Lea34eA
Kiojeusoqe

1-S¥ -~ UO}3e3S yoJeasey Ajuno) K31i) sewer

[Aep aed 3084 S| p/34]
e|nsujuad sawep~¥J40A ©Y3 Uf pejedoi suoj3els Yoaeesad Jajem-punolb wouaj sasAjeue ado)--°g1 ajqel

59



SIMULATION OF GROUND-WATER FLOW

The ground-water resources of the York-James Peninsula were assessed with
the aid of a digital, ground-water flow model. The model was calibrated to
water levels measured prior to and throughout the history of ground-water
pumpage. Once calibrated, the model simulated changes in ground-water
flow conditions that resulted from projected scenarios of increased
withdrawal. Model results were used to assess the availability of ground
water as a continued source of supply for meeting the future water needs of
the peninsula.

Description of Conceptual and Digital Flow Models

The digital flow model developed for this study applies the computer
program written by McDonald and Harbaugh (1984) to simulate ground-water flow.
This program uses the finite-difference method to solve the three-dimensional,
second-order, partial-differential equation that describes the flow of ground
water through a porous media. The conceptualization of the Coastal Plain
multiaquifer system discussed in detail by Harsh and Laczniak (1986) is
idealized as a layered sequence of aquifers separated by confining units
(£ig. 37). This conceptualization allows for the quasi-three-dimensional
solution of the ground-water-flow equation if (1) it can be assumed that
most lateral flow occurs within the aquifers, (2) vertical flow is controlled
by confining units, and (3) water released from confining-unit storage is
negligible. These assumptions are considered valid because the lateral
hydraulic conductivities of aquifers are much greater than those of confining
units, the vertical hydraulic conductivities of confining units are suf-
ficiently lower than those of aquifers, and simulation times are long enough
to minimize effects of water released by confining unit storage. 1In the
quasi-three-dimensional approach, aquifers are connected by a resistance-to-
flow term (vertical leakance) that simulates the impeding nature of inter-
vening confining units.

Grid and Boundaries

Aquifers and confining units were divided into rectangular grids of 105
by 39 blocks (fig. 38). Grid blocks were assigned values that represent the
average hydraulic characteristics and hydrologic stresses of respective
aquifers and confining units. Thus, each grid describes the lateral
variations of hydraulic characteristics within each hydrogeologic unit and
also defines the limits of each aquifer and confining unit. Block dimensions
vary from a minimum of 1.36 to a maximum of 4.08 square miles. The finer-grid
spacing in the western two-thirds of the study area simulates more detail.
Grid orientation and model conceptualization are consistent with the regional
digital flow model of the Virginia Coastal Plain (Harsh and Laczniak, 1986).

Boundaries of the digital flow model were chosen to best approximate
ground-water flow conditions in the study area. The northeastern and south-
western model limits extend beyond the York-James Peninsula to include nearby
ground-water users that strongly influence the flow of ground water within the
study area. These model boundaries are approximated by fluxes that simulate
lateral flow into and out of the model area where aquifers continue beyond the
model limits. This type of boundary reduces the overall grid size by elimi-
nating the need to simulate parts of aquifers outside the area of interest.
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PHYSICAL CONCEPTUALIZATION
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Figure 37. Physical and model conceptualization of ground-water flow system.
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The western and lower limits of the model are simulated as no-flow boun-
daries. The western limit approximates the contact between the metamorphic
and igneous rocks of the Piedmont physiographic province and the uncon-
solidated sediment of the Coastal Plain physiographic province. The lower
limit approximates the contact between aquifer sediment and the underlying
basement rock. A no-flow condition along this boundary is supported by the
large permeability contrast between these respective rock types.

The seaward limit of freshwater in each aquifer is the eastern limit of
the model. This limit is defined as the 10,000-mg/L chloride concentration
(Meisler, 1986). Flow across this boundary is assumed negligible because of
the density differences between fresh and salty water. Thus, this limit is
simulated by a no-flow boundary. The stable position of this boundary
throughout the history of ground-water development has been documented by
Larson (1981).

The upper limit is simulated as a constant-head (water-level) boundary
and approximates the recharge-discharge relation between surface water and
the water-table (unconfined) aquifer. Grid-block values were estimated from
U.S. Geological Survey topographic maps (quadrangles covering 7 1/2-minutes of
latitude and longitude, published at a scale of 1:24,000 or 1 inch = 2,000
feet) and approximate the average stage of surface water within a grid block.
This boundary is assumed constant in time because of the relative consistency
in the stage of surface water over the period of simulation.

Aquifer and Confining-Unit Characteristics

Hydraulic characteristics were determined for each grid block.
Transmissivities and storage coefficients were estimated for aquifers and ver-
tical leakances were estimated for confining units. Data quantifying these
characteristics in each block were not always available; therefore, grid-
block values were calculated from the physical and hydrologic properties that
define these hydraulic characteristics. Calculated values were refined and
verified from values determined by field and laboratory methods. Values are
stored on computer files at the Virginia Office of the U.S. Geological Survey
in Richmond, Virginia.

Transmissivity

Transmissivity for each grid block was calculated by multiplying the
average hydraulic conductivity by the average thickness of the aquifer within
the grid block. Average aquifer thickness values were determined from top of
aquifer maps (fig. 5-10), confining unit thickness maps (fig. 11-17), and a
map delineating the structure top of the underlying basement surface (Meng and
Harsh, 1984). Average hydraulic conductivities were estimated from specific-
capacity and aquifer-test data, laboratory analyses of core samples, and
grain-size analyses of aquifer sediment.

Maps of aquifer transmissivity are shown in figures 39-46. Transmissivity
generally increases eastward from the western (updip) limit of the aquifer and
then decreases near the eastern (freshwater) limit. Increases reflect a
thickening of aquifer sediment. Decreases reflect a thinning of aquifer sedi-
ment because of increased clay content, a decrease in freshwater-saturated
thickness of the aquifer, and (or) a decrease in the hydraulic conductivity of
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the sediment. Lower transmissivities also are present along major river chan-
nels where ancient and present-day rivers have eroded the original aquifer
material and replaced it with less permeable (conductive) sediment. The
highest transmissivities are in the upper, middle, and lower Potomac aquifers
and are a function of higher hydraulic conductivity and a greater thickness of
aquifer sediment. The ranges of transmissivity are listed by aquifer in table
19.

Storage coefficient

Storage coefficient for each grid block was calculated by multiplying the
average thickness of the aquifer by the estimated specific storage of the
aquifer. A specific storage of 1x10-6 was assumed for the confined aquifers.
This value is considered reasonable if all water released from aquifer storage
results from the compressibility of water (Lohman, 1979). A storage coef-
ficient of 0.15 was assumed for water-table (unconfined) grid blocks. This
value represents the specific yield of an unconfined aquifer. The areal
distribution of aquifer storage coefficient closely parallels the trends of
transmissivity. The range of storage coefficient are listed by aquifer.
in table 20.

Vertical leakance

Vertical leakance is a measure of the ability of a confining unit to
transmit water between aquifers and is defined as the quotient of vertical
hydraulic conductivity and the thickness of the confining unit. Vertical
leakance for each grid block was calculated by dividing the average vertical
hydraulic conductivity by the adjusted thickness of the confining unit for
each grid block. The average vertical hydraulic conductivity for each con-
fining unit was determined from laboratory analyses of core samples and are
listed in table 21. Confining-unit thicknesses shown in figures 11-17 were
adjusted to account for changes in vertical leakance that result from areal
variations in vertical hydraulic conductivity. Thus, adjusted confining-unit
thicknesses, shown in figures 47-54, inversely reflect areal changes in ver-
tical leakance. Vertical leakance generally decreases downdip (west to east)
because confining units thicken and the vertical hydraulic conductivity of the
sediment decreases. Greater vertical leakances are present in areas underlying
major river systems and Chesapeake Bay. In these areas, ancient and present-
day rivers have eroded the original confining unit sediments and have replaced
them with more permeable deposits (greater vertical hydraulic conductivity).
Hack (1957) describes the ancient Pleistocene river system of Chesapeake Bay.
The ranges of vertical leakance are listed by confining unit in table 22.

Time Discretization and Ground-Water Withdrawals

The quantity of ground water withdrawn has varied throughout the history
of its development (1891-1983). In order to account for transient changes in
withdrawal, time was divided into eleven pumping periods. Model-simulated
pumping periods are the years: 1891-1920, 1921-39, 1940-45, 1946-52, 1953-57,
1958-64, 1965-67, 1968-72, 1973-77, 1978-80, and 1981-83. Each pumping period
starts on January lst of its beginning year and ends on December 3lst of its
ending year. Withdrawal in each grid block was calculated for each pumping
period from annual withdrawal data. Total estimated annual withdrawal is com-
pared to simulated withdrawal in figure 55, Simulated withdrawal for each
pumping period are listed by aquifer in table 23.
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Table 19--Minimum and maximum values of model transmissivity

{values in fest squared per day]

Transmissivity
Aquifer

Minimum Max fmum
Columbia 18 544
Yorktown-Eastover 146 3,818
Chickahominy-Piney Point 21 2,479
Aquia 21 1,702
Virginia Beach 86 2,868
Upper Potomac 105 11,491
Middle Potomac 259 15,724
Lower Potomac 165 15,552

Table 20--Minimum and maximum values of model storage coefficient

[Values are dimensionless]

Storage coefficient

Aquifer
Minimum Maximum
Columbia 1.50x10-1 1.50x10-1
Yorktown-Eastover .1.20x10'5 1.50x10-1
Chickahominy-Piney Point 1.19x10-6 1.38x10~4
Aquia 1.19x10-6 9.48x10-5
Virginia Beach 2.40x1076 7.80x105
Upper Potomac 2.40x10-6 2.62x10-5
Middle Potomac 6.00x10~6 1.50x101
Lower Potomac 4.80x10-6 4.50x10~4
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Table 21--Estimated vertical hydraulic conductivity of confining units

[Values in feet per day]

Vertical hydraulic

Confining unit conductivity
Yorktown 8.64x10"4
St. Marys 4.15x10°4
Calvert 4.49x10-5
Nanjemoy-Mariboro 3.63x10°35
Virginia Beach 5.18x10-5
Upper Potomac 3.63x1075
Middle Potomac 3.28x10°5
Lower Potomac 2.42x10-5

Table 22--Minimum and maximum values of model vertical leakance

[Values in days-1]

Vertical Leakance

Confining unit Minimum Maximum

Yorktown 1.35x10-5 1.73x10-2
St. Marys 6.38x10~7 6.92x10-3
Calvert 6.83x10-8 4.49x10-3
Nanjemoy-Mar1boro 5.72x10-8 3.63x10-3
Virginia Beach 6.39x10-7 1.13x10-5
Upper Potomac 6.05x10-8 1.21x10"3
Middle Potomac 2.36x10-7 3.28x10-4
Lower Potomac 2.10x10-7 2.42x1075
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Lateral-Boundary Flux

Lateral-boundary flux, water flowing into and out of aquifers across the
northeastern and southwestern boundaries of the model, was calculated by
multiplying water-level (hydraulic-head) gradients which were computed by the
regional-flow model of Harsh and Laczniak (1986) by the harmonic mean of
transmissivity across grid blocks defining the boundary. Model-simulated
lateral-boundary fluxs for each pumping period are listed by aquifer in table
24,

Ground-Water Recharge

Ground-water recharge is precipitation that infiltrates into the water-
table aquifer and is not evaporated or transpired. Average annual precipita-
tion for the study area is 43 in/yr (inches per year) (National Oceanic and
Atmospheric Administration, 1980). Approximately 10 to 15 inches are esti-
mated to recharge the water-table aquifer throughout the Coastal Plain of
Virginia (Geraghty and Miller, 1978; Harsh, 1980; Johnston, 1977). The
remaining precipitation is lost to surface runoff or evapotranspiration. An
average annual recharge rate of 15 in/yr is assigned to all grid blocks that
simulate water-table conditions. Ground-water recharge varies over the model
area, but data are inadequate to define these areal variations. The higher
rate of 15 in/yr was used because preliminary low-flow analyses of stream flow
in the York-James Peninsula indicate baseflows representative of the higher
recharge rates (Hayes, D.C., U.S. Geological Survey, oral commun., 1986). A
constant recharge rate of 15 in/yr was considered acceptable because water
levels in the deeper confined aquifers upon which this study focuses are
fairly insensitive to any seasonal changes in recharge.

Streambed Leakance

Streambed leakance, defined as the hydraulic conductivity divided by the
thickness of the streambed sediment, controls the amount of water flowing
through the streambed into and out of the water-table (unconfined) aquifer.
Ground water that flows into the stream is referred to as stream baseflow.
Assuming full saturation, stream baseflow is the product of streambed leakance
and the difference between the water level in the water-table aquifer and
stage of the stream. Prepumped baseflow was computed for each grid block
intersecting a stream as the estimated ground-water recharge minus the simu-
lated prepumped flow from the water-table aquifer into the underlying confined
aquifer (Leahy and Martin, 1986; Harsh and Laczniak, 1986). Streambed
leakance for each respective grid block was calculated by dividing the com-
puted baseflow by the difference between the estimated water level in the
water-table aquifer and the stage of the stream. Values of streambed leakance
were assumed constant throughout the history of ground-water pumpage.

Simulation of Flow Conditions before Pumping

Prepumping flow conditions describe the ground-water flow system before
the withdrawal of ground water and were assumed to exist within the study area
prior to 1890. During this time, ground water existed in an approximate state
of hydraulic equilibrium (inflow equals outflow). Therefore, prepumping flow
conditions could be simulated by the steady-state solution of the ground-water
flow equation. The simulation of prepumping flow conditions provided initial
water levels for the simulation of pumping flow conditions and served as a
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comparison in order to determine the effects of withdrawal on ground-water
flow conditions.

Simulated prepumping water levels for the confined aquifers are shown as
potentiometric surfaces in figures 56-6l. Available measured water levels are
included on the maps to show agreement with simulated values. Because
measured water levels were sparse, simulated potentiometric surface maps also
were compared to prepumping maps published by Bal (1978), Siudyla and others
(1977), and Harsh and Laczniak (1986). Water-level gradients indicate that
the regional flow of ground water was from the Fall Line toward Chesapeake Bay
and the Atlantic Ocean, and that local flow was toward major river systems.
These maps show simulated water levels to be consistent with measured values,
and simulated flow directions to be in agreement with the conceptualization of
ground-water flow during prepumping flow conditions.

The model-computed water budget for prepumping flow conditions is shown in
table 25. Sources of water were recharge from precipitation (about 3,237
Mgal/d) and lateral-boundary inflow (about 8 Mgal/d). Discharges were flow to
surface water (about 3,236 Mgal/d) and lateral-boundary outflow (about 9
Mgal/d).

The direction of flow into and out of the aquifers through the overlying
confining units is shown in figures 62-67. The general direction of flow was
downward in the western part of the model area toward Chesapeake Bay and the
Atlantic Ocean and upward in the eastern part. In the shallow aquifers, the
direction of flow was influenced strongly by major river systems to which
ground water discharged. Flow of water into and out of aquifers through the
overlying confining units is given in table 26.

Simulation of Flow Conditions during Pumping

The withdrawal of ground water affected ground-water flow conditions in
the prepumping flow system. The response of the flow system to the withdrawal
of ground water was simulated by the transient solution of the ground-water
flow equation. The solution superimposes the effects of withdrawal on pre-
pumping flow conditions. Simulated withdrawals for each pumping period are
listed, by aquifer, in table 23. Lateral-boundary flux across the northeast-
ern and southwestern model boundaries, computed from water-level gra-
dients simulated by the regional model of Harsh and Laczniak (1986), are
listed for each pumping period, by aquifer, in table 24. The minimum and
maximum storage coefficients of each aquifer are listed in table 20. All
other hydraulic characteristics and hydrologic stresses were equivalent to
those simulating prepumping flow conditions.

Simulated water levels are compared to measured water levels at 15 obser-
vation wells in figure 68. Hydrographs show close agreement between measured
and simulated values. Locations of these observation wells are shown on
figure 69. The observation wells selected have the longest available water-
level record in the study area. Water levels of 126 other observation wells,
located throughout the model area, show similar agreement with model results,
but are not presented because most either have only short-term water-level
record available or are outside the limits of the study area.

Simulated water levels for 1983 are shown as potentiometric surfaces in
figures 70-75. Measured water levels are included on the maps to show
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Prepumping direction of ground-water flow into and out of

Figure 62.

Yorktown-Eastover aquifer through overlying confining unit.

84

-Piney Point aquifer through overlying confining unit.

Prepumping direction of ground-water flow into and out of

Chickahominy

Figure 63.
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52J10 in middie Potomac aquifer
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Figure 68. Simulated and measured water levels at selected observation wells.
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WATER LEVEL, IN FEET ABOVE OR BELOW SEA LEVEL

56G38 .in Chickahominy-Piney Point aquifer
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WATER LEVEL, IN FEET ABOVE OR BELOW SEA LEVEL

57G17 in upper Potomac aquifer
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agreement with simulated values. The deepest simulated water level, about 122
feet below sea level, was in the upper Potomac aquifer near the town of West
Point (fig. 73). Comparison with prepumping flow maps indicates a substantial
decline in water levels. The maximum water-level decline from prepumping flow
conditions and the approximate location of the maximum decline are given for
each aquifer in table 27. Areas of greatest water-level decline were centered
at the major pumping centers. Maximum water-level decline, about 157 feet,
was in the upper Potomac aquifer near the town of West Point (fig. 76). Other
areas of substantial water-level decline coincided with other areas of con-
centrated ground-water withdrawal. These areas are (1) near the town of
Smithfield, (2) in the eastern part of James City County, and (3) in the
western part of the city of Newport News. Water-level gradients indicate that
the regional flow of water in the deeper confined aquifers was toward major
pumping centers. Comparison of simulated potentiometric surfaces and top of
aquifer maps show that water levels in the Chickahominy-Piney Point aquifer
are approaching the top of the aquifer near the town of West Point. Water
levels were well above the top of respective aquifers elsewhere in the model
area.

Model-computed water budgets for each pumping period are given in table
25. As the withdrawal of ground water increased, (1) ground-water flow to sur-
face water was reduced, (2) surface-water flow to the ground water increased,
and (3) lateral-boundary inflow and lateral-boundary outflow increased.
Surface-water depletion, the sum of the reduced flow of water from the ground-
water flow system to surface water and the induced flow of water to the
ground-water flow system from surface water, replaced about 87 percent or 33
out of the 38 Mgal/d of water withdrawn in pumping period eleven (1981-83).
Lateral-boundary flow, the net flow of water into the ground-water flow system
through lateral-flux boundaries, accounted for about 12 percent or 4 Mgal/d.
The remainder, about 1 percent, was replaced by water released from aquifer
storage. The significance of surface-water depletion to lateral-boundary flow
throughout the history of ground-water pumpage is shown in figure 77.
Surface-water depletion accounted for the majority of water replacing that
withdrawn after pumping period three (1940-45). Lateral-boundary flow begins
to deviate from the trend in withdrawal during this same pumping period
because large withdrawals from wells located outside the model area reduced
lateral flow into the model area. Surface-water depletion, though negligible
when compared to the total quantity of surface water, could be extremely
important to local areas during periods of low-flow or drought conditions,
because the quantity of ground water sustaining streamflow (baseflow) would be
lessened. Also, increased surface-water recharge could pose serious water-
quality problems in areas where aquifers are overlain by poor-quality surface
water. Areas of simulated surface-water depletion greater than 0.4 in/yr from
prepumping flow conditions and areas of simulated surface-water recharge to
the ground-water flow system are shown in figure 78. Areas of greatest
surface-water depletion coincide with major river systems in the western part
of the model area. Here, the confined aquifers that supply much of the ground
water withdrawn approach land surface and were incised by ancient and present-
day rivers. Other areas of high surface-water depletion were centered at
pumping centers that withdraw water from the Yorktown-Eastover aquifer in the
southeastern part of the model area. The figure also shows that the majority
of surface water recharging the ground-water flow system was from sources that
contain salty water (Chesapeake Bay and Atlantic Ocean), but that this
recharge was to parts of aquifers not used for freshwater supply and the rates
of recharge were relatively slow.
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Table 27--Maximum water-level decline from prepumped flow conditions

for each aquifer, 1983

Aquifer

Maximum water-level
decline (feet)

Approximate
areal location

Yorktown-Eastover
Chickahominy-Piney Point
Aquia

Upper Potomac

Middie Potomac

Lower Potomac

7.1

100.3

127.9

156.8

128.3

125.6

City of Virginia Beach
Town of West Point
Town of West Point
Town of West Point
Town of Smithfield

Town of Smithfield
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The withdrawal of ground water affected the flow of water into and out of
the confined aquifers. Vertical leakage, the net flow into an aquifer through
the overlying and underlying confining units (calculated from table 26),
accounted for the majority of water replacing the water withdrawn. Lateral-
boundary flow, the net flow across lateral-flow boundaries (calculated from
table 24), accounted for most of the remaining water. A small percentage of
water was replaced by water released from aquifer storage.

The significance of vertical leakage to lateral-boundary flow in the
middle Potomac aquifer throughout the history of ground-water withdrawal is
shown by figure 79. Vertical leakage was the major source replacing water
withdrawn from the middle Potomac aquifer after pumping period three
(1940-45). As in the overall model water budget, lateral-boundary flow to the
middle Potomac aquifer begins to deviate from the trend in withdrawal during
this same time period because withdrawal from wells located outside the model
area reduced lateral-boundary flow into the aquifer. The direction of flow
into and out of aquifers through the overlying confining unit in 1983 is shown
in figures 80-85. Comparison with the prepumping flow maps indicates that the
area of recharge into aquifers through the overlying confining unit increased
from prepumping flow conditions; thus, more water was induced into the
aquifers through the overlying confining unit.

Water-level declines from prepumping flow conditions and the inland
lateral flow directions, suggested by 1983 simulated water-level gradients
near the saltwater parts of the upper, middle, and lower Potomac aquifers,
cause some question as to the validity of using a stationary no-flow boundary
condition at the freshwater limit. Velocity, which is directly proportional
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Figure 77. Change in major model water-budget flow components throughout
history of ground-water development.
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to the water-level gradient and the lateral hydraulic conductivity of the
aquifer, can be calculated to determine the rate of ground-water movement. If
it is assumed that chlorides move with ground water, then the magnitude of
velocity can be used to determine the rate of inland movement of the fresh-
water limit. Because water-level declines have expanded out to the freshwater
limit, simulated water levels are affected by the no-flow condition. Thus,
computed velocities may be unrealistic. In order to test the validity of this
boundary condition, the seaward limit of all aquifers was extended to the
freshwater limit of the Yorktown-Eastover aquifer (fig. 62). Hydraulic
characteristics for each grid block in the saltwater parts of aquifers and
confining units were assumed equal to the furthest seaward grid block value in
the corresponding grid column. The expanded grid allows velocities to be com-
puted from simulated water-level gradients across the original freshwater
limit. Velocities computed by this approach assume freshwater densities and,
therefore, would be higher than true saltwater flow velocities.

Velocities for each grid block were calculated by substituting water-level
gradients across adjacent grid blocks into Darcy's equation and dividing the
resulting flow rate by an assumed porosity of 40 percent. Velocities calcu-
lated from simulated 1983 water levels were greatest in the middle Potomac
aquifer (fig. 86). Magnitudes of velocity near the freshwater limit were
less than 10 ft/yr (feet per year). Velocities of this magnitude would result
in minimal inland movement of the freshwater limit relative to the spatial and
temporal scale of simulation, but because of the effect of the no-flow con-
dition at the freshwater limit, the expanded model was used to further analyze
velocities in these areas. Water levels, simulated by the expanded model,
were higher than those simulated in the calibrated model. For 1983,
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Figure 79. Change in water-flow components into and out of middle Potomac
aquifer throughout history of ground-water development.
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the maximum water-level difference along the freshwater limit was about 15
feet, but at pumping centers was less than 7 feet. Landward of the freshwater
limit, velocity distributions for aquifers were similar in shape, but magnitu-
des were slightly higher than velocities calculated from calibrated water
levels. Near the freshwater limit, magnitudes of velocity generally were less
than 10 feet as in the calibrated simulation. The reason for the small dif-
ferences between the two simulations in computed velocities near the fresh-
water limit is assumed to be because transmissivities decrease within the
aquifers approaching this limit. Because of these small differences and slow
rates, the stable positioning of a no-flow boundary at the freshwater limit is
considered a sufficient approximation for the pumping conditions simulated.

Projected Effects of Increased Ground-Water Withdrawal

Four scenarios, referred to as projections I through IV, were simulated
to forecast the effects of increased withdrawal on ground-water flow con-
ditions in the York-James Peninsula. Each projection simulates a different
increase in withdrawal. Projections are not intended to predict exact ground-
water flow conditions at some future date but, instead, to provide information
to evaluate the ground-water resource for meeting future water needs.
Scenarios were simulated with the steady-state solution of the ground-water
flow equation, thus results are indicative of flow under equilibrium con-
ditions. Withdrawals simulated for each projection are listed by aquifer in
table 28. Lateral-boundary fluxes across the northeastern and southwestern
model boundaries, were computed from water-level gradients simulated by the
regional model of Harsh and Laczniak (1986) and are given by aquifer, for each
projection, in table 29. Aquifer and confining-unit characteristics and
ground-water recharge were equivalent to those simulating pumping flow con-
ditions.

Projection I--Doubling Ground-Water Withdrawal

Projection I doubled withdrawal from all wells located in the Coastal
Plain of Virginia. Withdrawal from the model area was increased by 38 Mgal/d
and totaled about 76 Mgal/d (table 28). A withdrawal of this magnitude is
within the range projected by local planners to meet near future water needs
of the peninsula (York-James Peninsula Project Advisory Committee Meeting,
oral commun., 1985).

Projected water levels in the confined aquifers are shown as poten-
tiometric surfaces in figures 87-92. The deepest projected water level, about
277 feet below sea level, was in the upper Potomac aquifer near the town of
West Point (fig. 90). Water levels remained well above the top of respective
aquifers, except in the Chickahominy-Piney Point aquifer (fig. 88) near the
town of West Point. A decline in water level below the top of an aquifer
would cause a change within the aquifer from confined to unconfined (water-
table) flow conditions and would result in the dewatering of the aquifer
material. Dewatering could cause land subsidence and decreases in aquifer
yields. The model was not developed to simulate the effects of this change,
but it does provide the knowledge needed to avoid its occurrence. Maximum
water-level declines from 1983 flow conditions and the location of these
declines are listed for each aquifer in table 30. The maximum water-level
decline, about 155 feet, was in the upper Potomac aquifer near the town of
West Point. The areal distribution of water-level decline from 1983 flow con-
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Table 28--Withdrawal by aquifer for projections I, II, III, and IV

[values in millions of gallons per day]

: Pumping Projection
Aquifer period
11 I I1 11 v

Columbia 0.128 0.256 0.128 0.128 0.128
Yorktown-Eastover 1.403 2.806 4.406 1.403 4.406
Chickahominy-

Piney Point 2.641 5.282 5.214 4.439 4.164
Aquia 1.003 2.008 1.685 1.685 1.410
Virginia Beach .006 .012 .006 .008 .008
Upper Potomac 13.644 27.228 21.814 17.702 19.068
Middle Potomac 15.150 30.300 28.415 19.502 25.548
Lower Potomac 4.135 8.270 9.588 5.251 8.317
Total 38.110 76.220 71.253 50.110 63.042

ditions in the upper Potomac aquifer is shown in figure 93. The extent of
water-level decline suggests that increasing withdrawal from established
pumping centers is an impractical means of meeting future water needs.

The model-computed water budget is included in table 31. The difference
between the projected and 1983 budget flow components is the change in
ground-water inflows and outflows. Changes from 1983 flow conditions in
surface-water depletion (sum of reduced flow to surface water and induced flow
from surface water), lateral-boundary flow (net flow across lateral-flow
boundaries), and withdrawal are compared for each projection in figure 94.
About 85 percent of the additional 38 Mgal/d of water withdrawn in projection
I was replaced by surface-water depletion. The remainder of water was
replaced by lateral-boundary flow. The lesser quantity of water replaced by
lateral-boundary flow was because large pumping centers located outside the
model area reduced lateral flow into the model area. Areas of simulated high
surface-water depletion (greater than 0.4 in/yr from prepumping conditions)
and areas of surface-water recharge into the ground-water flow system are
shown in figure 95. Both areas increased from 1983 flow conditions.
Increased areas of surface-water recharge primarily were from sources con-
taining salty water (Chesapeake Bay and Atlantic Ocean).
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Table 30.--Maximum water-level decline from 1983 flow conditions
for each aquifer, projection 1

Decline Grid Grid Approximate

Aquifer (feet) row column areal location
Yorktown-Eastover 7.15 27 10 City of Richmond
Chickahominy-Piney Point 99.92 50 29 Town of West Point
Aquia 126.49 64 20 City of Williamsburg
Upper Potomac 155.23 49 30 Town of West Point
Middle Potomac 127.11 84 1 Town of Suffolk
Lower Potomac 122.61 50 30 Town of West Point
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Figure 94. Change in major model water-budget flow components for projections
I, II, III, and 1IV.
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would require that pumps be lowered in order to maintain sufficient yields
and, thus, would increase energy expenditures to bring water to the user.
Declines below screen intake intervals would require that wells be deepened in
order to obtain water from lower horizons within the aquifer or from
underlying aquifers. The cost of deepening of wells could place an enormous
financial burden on existing ground-water users.

The withdrawal of ground water lowers water levels within the aquifer at
the pumping center. The lowering of water levels causes water from adjacent
parts of the aquifer and from adjacent aquifers to move toward the pumping
center in order to replace the water withdrawn. If this replacement is with
water of undesirable quality, the ground water could become unacceptable for
its intended use. The model provides a method to simulate the future decline
of water levels. Simulated projections provide for a comparison to determine
the withdrawal scenario that would minimize future water-level declines.

Results of the projections suggest that increased ground-water withdrawal
will continue to lower water levels throughout the aquifers of the York-James
Peninsula. Substantial water-level declines were required to induce the
recharge needed to replace the water withdrawn from the aquifers; however,
water levels generally remained above the top of the respective aquifers.
Because numerous users already withdraw ground water, it is far more likely
that water-level declines will result in unacceptable interference among
ground-water users before dewatering of aquifers becomes a concern. From a
water management prospective, this means water-level declines will limit the
yields from aquifers before available recharge is depleted unless existing
users lower screen intakes. As the number of ground-water users grow, any
future increases in withdrawal will affect more users, thus making water-level
decline an even more important consideration in the management of the ground-
water resource.

Results from scenarios of increased withdrawal show that the magnitude
and distribution of water-level decline were dependent on the location and
quantity of the water withdrawn. Water-level declines are presently a concern
in (1) the Chickahominy-Piney Point aquifer near the town of West Point
because water levels are approaching the top of this aquifer, (2) other con-
fined aquifers near the town of West Point because water-level decline is
already severe, and (3) the Yorktown-Eastover aquifer because the distance
between water levels and the top of the aquifer is relatively small and the
number of ground-water users (domestic) is already great. Projection I, which
doubled withdrawal from all wells located in the Virginia Coastal Plain
resulted in severe water-level declines at the established pumping centers and
moderately severe decline throughout the remainder of the aquifers. Other
projections, which increased withdrawal from wells located away from
established pumping centers, generally resulted in less severe water-level
decline in the aquifers and far less severe decline at previously established
pumping centers.

Projection 1V, which simulated about 21 percent less withdrawal than pro-
jection II, resulted in comparatively far less severe water-level decline and
suggests that the withdrawal of ground water only as a supplement for future
municipal water supply would increase the longevity of the resource.
Projection III, which withdrew water from the deeper confined aquifers, had
minimal effect on water levels in the Yorktown-Eastover aquifer and suggests
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that increased withdrawal from the deeper confined aquifers does not impact
users withdrawing water from the shallow aquifers.

Results of projections show that increased withdrawal induced more
recharge into the ground-water flow system to replace the water withdrawn.
Contributions from individual sources of recharge were dependent on the loca-
tion and quantity of the water withdrawn. Increased withdrawal from wells
located outside the model area (projection I) reduced the percentage of water
being replaced by lateral-boundary flow and increased the percentage being
replaced by surface-water depletion. The net result would be decreased
baseflow to streams.

The quality of water recharging the aquifers also is crucial to the longe-
vity of the ground-water resource as a continued supply of fresh ground water.
Each projection had a different effect on the distribution and rate of
recharge induced into the ground-water flow system. Most of the surface-water
recharge was from brackish sources into parts of underlying aquifers not uti-
lized for freshwater supply. Rates of induced recharge were relatively slow.
Flow directions into and out of individual aquifers indicate that this water
would move downward into underlying aquifers. Water-level gradients suggest
that once in these underlying aquifers water would move inland toward parts of
aquifers utilized for freshwater supply. The degree and extent of con-
tamination resulting from this inland movement of salty water and the time
frame in which contamination would occur are unknown. Additional withdrawal
from wells located in the Yorktown-Eastover aquifer in the eastern part of
York County (projections II and IV) induced local recharge from nearby
overlying brackish surface-water sources directly into the aquifer.

Increased ground-water withdrawal further affected the recharge-discharge
relation between aquifers. In the eastern part of the study area, fresh-
water aquifers are underlain by aquifers that contain a more saline water.
In some areas, projected withdrawal induced local upward flow from the
underlying aquifers. The distribution and rate of upward flow were dependent
on the location and quantity of water withdrawn. The decline of water levels
in the confined aquifers and the movement of salty water into aquifers, either
from surface sources or from underlying aquifers, needs to be minimized in order
to ensure the longevity of fresh ground-water supplies.

Model Application and Limitations

Application of the model as a means to simulate the regional effects of
increased withdrawal on ground-water flow conditions in the York-James
Peninsula is well documented by projection results. The model was not deve-
loped to predict absolute water levels within aquifers. Model results indi-
cate that water levels within the study area are and will be dependent on
withdrawals from both inside and outside the model area. The intent of this
study was not to determine future ground-water use from the Coastal Plain of
Virginia, but to develop a model to provide information to aid in the
understanding of ground-water flow and to address concerns about the availabi-
lity of the ground water for meeting future water needs.

The model successfully simulated the regional effects of simulated scenarios

of increased withdrawals on ground-water flow conditions. The large spatial
and temporal scale of the model prevents hydrologic analysis of local effects

154



and effects of small-scale withdrawals. Simulation of local effects would
require spatial refinement of aquifer and confining unit characteristics and
of the hydrologic stresses influencing ground-water flow (withdrawal, ground-
water recharge, and lateral-boundary flow). The model did not predict effects
of increased withdrawal through time. This would require temporal refinement
of the hydrologic stresses influencing the flow of ground water. 1In order to
simulate short-term effects of increased withdrawal, a more detailed defini-
tion of the storage properties of the aquifers and confining units is
required.

The model does not provide a comprehensive analysis of flow in the water-
table aquifer or of local flow between the ground and surface water. For the
model to provide a comprehensive analysis of these flows, additional data are
needed to refine the spatial and temporal variations in streambed leakance,
recharge to and withdrawal from the water-table aquifer, and stage of streams.

The model is based on the assumption that the seaward limit of each
aquifer is the 10,000-mg/L chloride concentration (freshwater limit). This
limit was simulated as a stationary no-flow boundary condition. As declines
in water level expand outward from pumping centers and intercept this limit,
the validity of this assumption diminishes. Simulated water-level gradients
indicate a substantial potential for lateral and vertical movement of salty
water into freshwater parts of aquifers, but because of the stable positioning
and no-flow condition at this boundary, the model cannot accurately simulate
the movement of the saltwater/freshwater interface or the hydrologic effects
associated with its movement. More accurate representation of the seaward
boundary requires greater knowledge of the interaction between saltwater and
freshwater in the Coastal Plain aquifers. If future data show that freshwater
and saltwater act as immiscible fluids and that the movement of chloride is
dominated by the flow of ground water, and only regional estimates of the
position of saltwater are desired, then a sharp interface approach to simu-
lating this boundary would be appropriate. If data indicate the two fluids
are highly miscible and changes in chloride concentration need to be known,
then a solute transport approach to saltwater movement would be required.
Either approach requires more knowledge of present chloride distributions
within aquifers and improved definition of the aquifer and confining unit pro-
perties that characterize the flow of ground water and the transport of solu-
tes through the ground-water flow system.
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SUMMARY

Ground water is an important resource of the York-James Peninsula that
historically has provided a major part of the peninsula's freshwater supply.
The continued withdrawal of ground water has caused a lowering of water levels
throughout the multiaquifer system and has created cones of depression cen-
tered at and expanding outward from areas of concentrated ground-water use.
Withdrawal is expected to increase, further lowering water levels. This is
expected to result in interference among ground-water users and the possible
movement of salty water into freshwater parts of aquifers. The availability
of ground water for meeting future water needs has become a matter of local
and regional concern. A digital flow model was used to aid in the hydrologic
assessment of the ground-water resource of the York-James Peninsula.

The sediment of the York-James Peninsula forms a layered sequence of
aquifers and intervening confining units. A water-table aquifer, seven con-
fined aquifers, and intervening confining units were identified from lithologic
and geophysical logs, water-level and water-quality data, and paleontologic
and mineralogic analyses of core samples. Delineated aquifers from youngest
to oldest are the Columbia, Yorktown-Eastover, Chickahominy-Piney Point,

Aquia, and upper, middle, and lower Potomac aquifers. The Columbia aquifer is
the only aquifer unconfined throughout its entire extent.

Hydrogeologic data were compiled and analyzed to characterize the hydrolo-
gic and physical properties of the aquifers and confining units. Annual
ground-water withdrawal from the model area was compiled by user and aquifer.
Total ground-water use, excluding domestic and irrigation, was estimated to be
about 39 Mgal/d in 1983. About 87 percent (34 Mgal/d) of the 1983 use was
withdrawn from the upper, middle, and lower Potomac aquifers. The upper and
middle Potomac aquifers have supplied the majority of ground water withdrawn
from the study area. The importance of an aquifer to local water supply
varies over the study area. Ground water is withdrawn primarily from the
middle and lower Potomac aquifers in the western part of the study area, from
the Chickahominy-Piney Point and upper and middle Potomac aquifers in the
central part, and from the Columbia and Yorktown-Eastover aquifers in the
eastern part. The largest withdrawal of ground-water from the York-James
Peninsula is centered near the town of West Point and was estimated to be
about 15.6 Mgal/d in 1983.

Quality is an important consideration in evaluating the availability of
ground water. Ground-water quality differs throughout the multiaquifer system
because of contact with minerals in the sediment and mixing with resident
salty water. Ground-water is characterized as a calcium-bicarbonate type
water in recharge areas, changes to a sodium-bicarbonate type water downgra-
dient from the recharge areas, and finally changes to a sodium-chloride type
water approaching sites of regional discharge (Chesapeake Bay and Atlantic
Ocean). Chemical constituents of greatest concern are chloride, iron,
dissolved solids, fluoride, hardness, and sodium. Specific water-quality
problems within individual aquifers differ. The Yorktown-Eastover aquifers
contain water with high concentrations of chloride and sodium in areas
fringing Chesapeake Bay and hardness in the eastern half of the peninsula.
The Chickahominy-Piney Point aquifer contains water with high concentrations
of chloride, sodium, dissolved solids, and fluoride in the eastern part and
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hardness in the central and western part of the peninsula. The Aquia aquifer
contains water with elevated concentrations of chloride, sodium, dissolved
solids, and fluoride in the eastern part and hardness in the western part of
the peninsula. The upper Potomac aquifer contains water with elevated con-
centrations of chloride, sodium, and dissolved solids in the eastern part,
fluoride in the central and eastern part, and hardness in the western part of
the peninsula. The middle Potomac aquifer contains water with elevated con-
centrations of chloride, sodium, and dissolved solids in the eastern part and
hardness in the western part of the peninsula. Local areas within this
aquifer contain water with elevated concentrations of fluoride and dissolved
solids. The lower Potomac aquifer contains water with high concentrations of
chloride, sodium, and dissolved solids in the eastern and central part and
hardness in the eastern part of the peninsula. Iron is a local problem in all
aquifers. The middle and lower Potomac aquifers, in the western part of the
peninsula, contain water of the best quality for potable supply within the
peninsula.

Aquifer transmissivity and storage coefficients and confining-unit ver-
tical leakance were estimated by field and laboratory methods. Aquifer
transmissivities and storage coefficients were determined from aquifer and
specific-capacity test data. Aquifer-test data analyzed by "leaky methods"
are believed to best approximate aquifer transmissivities in the peninsula.
Laboratory analyses of core samples provided vertical hydraulic conductivities
for confining units in the study area. Vertical hydraulic conductivities
generally decreased with depth.

Maps were constructed to define areal variations in aquifer transmissivity
and confining-unit vertical leakance. Transmissivity generally increases
eastward (downdip) from an aquifer's western limit and then begins to decrease
toward its easternmost limit. The Potomac aquifers are the most transmissive
aquifers in the study area. Vertical leakance decreases eastward (downdip)
from a confining unit's western limit. Higher vertical leakance values within
a confining unit occur where historic and present-day river systems have
eroded and replaced the original confining-unit sediment with a more permeable
sediment. Deeper confining units are characterized by lower vertical leakan-
ces.

A digital flow model simulated ground-water flow prior to and throughout
the history of ground-water pumpage. Success of the model was determined
by comparing simulated to measured water levels. Simulated water levels were
in close agreement with measured values. Maximum water-level decline from
prepumped-flow conditions, about 157 feet, was in the upper Potomac aquifer
near the town of West Point. Other areas of substantial decline coincided
with areas of concentrated ground-water withdrawal near the town of Smith-
field, in the eastern part of James City County, and in the western part of
the city of Newport News. Water-level gradients indicated a change in the
regional direction of ground-water flow from prepumped-flow conditions toward
the major pumping centers. Aquifer water levels were well above the respec-
tive tops of aquifers, except in the Chickahominy-Piney Point aquifer near the
town of West Point.

Model-computed water budgets indicate that the major source replacing water

withdrawn from the the ground-water flow system was reduced flow to surface
water. A combination of this reduced flow to and increased flow from surface
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water (surface-water depletion) replaced about 87 percent or 33 of the 38
Mgal/d of water withdrawn from the model area in the final pumping period
(1981-83). Net lateral-boundary flow into the ground-water flow system across
lateral-flow boundaries accounted for about 12 percent or 4 Mgal/d. The
remainder was replaced by water released from aquifer storage. Increased
withdrawal from wells located outside the model area reduced lateral-boundary
flow into the model area. Areas of greatest surface-water depletion were
along major river systems in the western part of the model area where
underlying confining units were incised by ancient and present-day river
systems. The majority of the surface water recharging to the ground-water
flow system was from sources containing salty water (Chesapeake Bay and
Atlantic Ocean), but this recharge was to parts of aquifers not used for
freshwater supply. Aquifer water budgets indicate that the majority of

water withdrawn from individual confined aquifers was replaced through the
overlying and underlying confining units (vertical leakage). Areas of
recharge into aquifers through the overlying confining unit increased from
prepumped-flow conditions.

Four scenarios forecast the effects of increased withdrawal on ground-
water flow conditions. Results were used to assess the availability of ground
water for meeting future water needs. Each scenario had different effects on
the flow of water into, through, and out of the ground-water flow system.
Results suggest that increased withdrawal from the aquifers will continue to
lower water levels and that this decline will limit the yields from aquifers
before available recharge is depleted.

Locating projected increases in withdrawal away from established pumping
centers resulted in less severe water-level declines in those areas presently
experiencing the greatest declines and generally throughout the major
aquifers. The withdrawal of ground water for supplemental supply would lessen
the severity of future water-level declines. Withdrawal from the deeper con-
fined aquifers had minimal effect on water levels in the Yorktown-Eastover
aquifer. Water-level declines resulting from withdrawal of water from the
Yorktown-Eastover aquifer in eastern York County, though relatively limited in
magnitude and extent, likely would affect a substantial number of users
because of the extensive use of this aquifer for domestic supply.

Projected increases in withdrawal had different effects on the distribu-
tion and rate of recharge induced to replace water withdrawn f£rom the ground-
water flow system. Most recharge was from brackish surface sources, but this
recharge was to parts of aquifers not used for freshwater supply. Rates of
this recharge were relatively slow. Withdrawal from the Yorktown-Eastover
aquifer in eastern York County induced local recharge directly from overlying
brackish surface sources. Increasing withdrawal induced upward flow of water
from underlying aquifers. In some cases it is likely that this water is of a
more salty quality. The distribution and rate of induced upward recharge were
dependent on the location and quantity of the withdrawal. Water-level decli-
nes and the movement of salty water into the aquifers need to be minimized in
order to ensure the longevity of the ground-water resource. This model provi-
des a means for forecasting the effects of increased withdrawal that could
limit future yields from the aquifers of the York-James Peninsula.
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